Skip to main content

A Stochastic Closure Approach for LES with Application to Turbulent Channel Flow

  • 5327 Accesses

Part of the ERCOFTAC Series book series (ERCO,volume 20)

Abstract

The integral conservation laws for mass, momentum and energy of a flow field are universally valid for arbitrary control volumes. Thus, if the associated fluxes across its bounding surfaces are determined exactly, the equations capture the underlying physics of conservation correctly and guarantee an accurate prediction of the time evolution of the integral mean values.

Keywords

  • Turbulent Channel Flow
  • Large Eddy Simulation (LES)
  • Arbitrary Control Volume
  • Integral Conservation Laws
  • Flux Correction Term

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14448-1_7
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14448-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   399.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comp. Fluid Dyn. 27, 221–237 (2013)

    CrossRef  Google Scholar 

  2. Hickel, S., Adams, N.A., Domaradzki, J.A.: And adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413–436 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Horenko, I.: On identification of nonstationary factor models and its application to atmospherical data analysis. J. Atmos. Sci. 67, 1559–1574 (2010)

    CrossRef  Google Scholar 

  4. Metzner, P., Putzig, L., Horenko, I.: Analysis of persistent non-stationary time series and applications. CAMCoS 7, 175–229 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Scotti, A., Meneveau, C.: A fractal model for large eddy simulation of turbulent flows. Phys. D 127, 198–232 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical report, NASA Langley Research Center, 97-65 (1997)

    Google Scholar 

  7. Uhlmann, M.: Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow. http://www-turbul.ifh.uni-karlsruhe.de/uhlmann/reports/produce.pdf (2000)

  8. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. von Larcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Metzner, P. et al. (2015). A Stochastic Closure Approach for LES with Application to Turbulent Channel Flow. In: Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V. (eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14448-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14447-4

  • Online ISBN: 978-3-319-14448-1

  • eBook Packages: EngineeringEngineering (R0)