Skip to main content

Numerical Simulation of Breaking Gravity Waves

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation IX

Part of the book series: ERCOFTAC Series ((ERCO,volume 20))

  • 5569 Accesses

Abstract

Geophysical flows including stable stratification and system rotation are a special challenge for turbulence subgrid-sclae models for large-eddy simulation (LES) and hence require validation with suitable test cases. We validate different subgrid-scale models for this kind of flows using a breaking monochromatic inertia-gravity wave that has been studied before. We find that the standard Smagorinsky model cannot be recommended while the dynamic Smagorinsky model and the implicit turbulence model ALDM are suitable to simulate this complex flow with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Remmler, S., Fruman, M.D., Hickel, S.: Direct numerical simulation of a breaking inertiagravity wave. J. Fluid Mech. 722, 424–436 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fruman, M.D., Achatz, U.: Secondary instabilities in breaking inertia-gravity waves. J. Atmos. Sci. 69, 303–322 (2012)

    Article  Google Scholar 

  3. Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)

    Article  MATH  Google Scholar 

  5. Hickel, S., Adams, N.A.: A proposed simplification of the adaptive local deconvolution method. ESAIM 16, 66–76 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hickel, S., Kempe, T., Adams, N.A.: Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions. Theor. Comput. Fluid Dyn. 22, 227–242 (2008)

    Article  MATH  Google Scholar 

  7. Remmler, S., Hickel, S.: Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation. Theor. Comput. Fluid Dyn. 2012. doi:10.1007/s00162-012-0259-9

  8. Remmler, S., Hickel, S.: Direct and large eddy simulation of stratified turbulence. Int. J. Heat Fluid Flow 35, 13–24 (2012)

    Article  Google Scholar 

  9. Smagorinsky, J.: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev. 91, 99–164 (1963)

    Google Scholar 

  10. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Remmler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Remmler, S., Fruman, M.D., Achatz, U., Hickel, S. (2015). Numerical Simulation of Breaking Gravity Waves. In: Fröhlich, J., Kuerten, H., Geurts, B., Armenio, V. (eds) Direct and Large-Eddy Simulation IX. ERCOFTAC Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14448-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14447-4

  • Online ISBN: 978-3-319-14448-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics