A Symmetry-Preserving Discretization and Regularization Subgrid Model for Compressible Turbulent Flow

  • W. RozemaEmail author
  • R. W. C. P. Verstappen
  • J. C. Kok
  • A. E. P. Veldman
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)


The Navier-Stokes equations for compressible flow can be expressed in different forms. Although the forms are mathematically equivalent, each form emphasizes different properties of compressible flow, and each form yields a different numerical discretization.


Internal Energy Direct Numerical Simulation Compressible Flow Discrete Level Conservation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Verstappen, R.W.C.P.: On restraining the production of small scales of motion in a turbulent channel flow. Comput. Fluids 37, 887–897 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Kok, J.C.: A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids. J. Comput. Phys. 228, 6811–6832 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229, 276–300 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Sanderse, B.: Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 100–131 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(\text{ Re }_{\tau } = 590\). Phys. Fluids 11, 943–945 (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • W. Rozema
    • 1
    Email author
  • R. W. C. P. Verstappen
    • 2
  • J. C. Kok
    • 1
  • A. E. P. Veldman
    • 2
  1. 1.National Aerospace Laboratory (NLR)AmsterdamThe Netherlands
  2. 2.Johann Bernoulli Institute for Mathematics and Computer Science, University of GroningenGroningenThe Netherlands

Personalised recommendations