Mach Number Influence on Vortex Breakdown in Compressible, Subsonic Swirling Nozzle-Jet Flows

  • Tobias LuginslandEmail author
  • Leonhard Kleiser
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)


The phenomenon of vortex breakdown is observed in a variety of technical (vortex burners, delta wing aircraft) and environmental flows (tornadoes, hurricanes).


Mach Number Recirculation Zone Recirculation Region Vortex Breakdown Nozzle Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was funded by an ETH research grant ETH-18 08-1 and supported by a grant from the Swiss National Supercomputing Centre (CSCS), Lugano, under project ID s52. We thank M. Gloor for comments on a draft of this paper.


  1. 1.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103(1), 16–42 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order runge-kutta algorithm. Comput. Fluids 35, 1459–1463 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Müller, S. B.: Numerical investigations of compressible turbulent swirling jet flows. Doctoral Thesis, ETH Zurich (2007)Google Scholar
  4. 4.
    Schlatter, P., Stolz, S., Kleiser, L.: Analysis of the SGS energy budget for deconvolution-and relaxation-based models in channel flow. In: Lamballais, E., Friedrich, R., Geurts, B.J., Métais, O. (eds.) Direct and Large-Eddy Simulation VI, pp. 135–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Luginsland, T.: Numerical investigation of compressible, turbulent vortex breakdown in swirling jet flows, Doctoral Thesis, ETH Zurich (2013), in preparation.Google Scholar
  6. 6.
    Müller, S.B., Kleiser, L.: Large-eddy simulation of vortex breakdown in compressible swirling jet flow. Comput. Fluids 37(7), 844–856 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chervinsky, A., Chigier, N.: Experimental and theoretical study of turbulent swirling jets issuing from a round orifice. Isr. J. Technol. 4, 44–54 (1965)Google Scholar
  8. 8.
    Lesshafft, L., Huerre, P.: Linear impulse response in hot round jets. Phys. Fluids 19, 024102 (2007)CrossRefGoogle Scholar
  9. 9.
    Coenen, W., Sevilla, A.: The structure of the absolutely unstable regions in the near field of low-density jets. J. Fluid Mech. 713, 123–149 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Liang, H., Maxworthy, T.: An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Rusak, Z., Lee, J.H.: On the stability of a compressible axisymmetric rotating flow in a pipe. J. Fluid Mech. 501, 25–42 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Melville, R.: The role of compressibility in free vortex breakdown. AIAA Paper 96–2075, 1–16 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Fluid DynamicsZurichSwitzerland

Personalised recommendations