Advertisement

On the Large-Eddy Simulations of the Flow Past a Cylinder at Critical Reynolds Numbers

  • O. LehmkuhlEmail author
  • I. Rodríguez
  • J. Chiva
  • R. Borrell
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

The flow past a circular cylinder is associated with different types of instabilities which involve the wake, the separated shear layers and the boundary layer.

Keywords

Reynolds Number Drag Coefficient Circular Cylinder Cylinder Surface Critical Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been financially supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (Ref. ENE2010-17801) and, by the Collaboration Project between Universitat Politècnica de Catalunya and Termo Fluids S.L. We acknowledge PRACE for awarding us access to resource MareNostrum III based in Barcelona, Spain. We also acknowledge the technical expertise, assistance and access to MareNostrum II provided by the Red Española de Supercomputación.

References

  1. 1.
    Achenbach, E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5e6. J. Fluid Mech. 34, 625–639 (1968)CrossRefGoogle Scholar
  2. 2.
    Bearman, P.: On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech. 37, 577–585 (1969)CrossRefGoogle Scholar
  3. 3.
    Bursnall, W., Loftin L.J.: Experimental investigation of the pressure distribution about a yawed circular cylinder in the critical Reynolds number range. Technical report NACA TN2463, NACA (1951)Google Scholar
  4. 4.
    Cantwell, B., Coles, D.: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983)CrossRefGoogle Scholar
  5. 5.
    Delany, N., Sorensen, N.: Low-speed drag of cylinders of various shapes. Technical report NACA TN3038, NACA (1953)Google Scholar
  6. 6.
    Hughes, T., Mazzei, L., Jansen, K.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hunt, J., Wray, A., Moin, P.: Eddies, stream and convergence zones in turbulent flows. Technical report CTR-S88, Center for Turbulent Research (1988)Google Scholar
  8. 8.
    Lehmkuhl, O., Rodríguez, I., Baez, A., Oliva, A., Pérez-Segarra, C.: On the large-eddy simulations for the flow around aerodynamic profiles using unstructured grids. Comput. Fluids 84, 176–189 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Rodríguez, I., Borrell, R., Lehmkuhl, O., Pérez-Segarra, C., Oliva, A.: Direct numerical simulation of the flow over a sphere at Re = 3700. J. Fluid Mech. 679, 263–287 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(03), 345–356 (1961)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schewe, G.: On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)Google Scholar
  13. 13.
    Spitzer, R.: Measurements of unsteady pressures and wake fluctuations for flow over a cylinder at supercritical Reynolds number. Ph.D. thesis, California Institute of Technology (1964)Google Scholar
  14. 14.
    Vaz, G., Mabilat, C., van der Wal, R., Gallagher, P.: Viscous flow computations on a smooth cylinders: a detailed numerical study with validation. In: Proceedings of 26th International Conference on Offshore Mechanics and Arctic Engineering. OMAE2007, San Diego, California (2007)Google Scholar
  15. 15.
    Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • O. Lehmkuhl
    • 1
    Email author
  • I. Rodríguez
    • 1
  • J. Chiva
    • 1
  • R. Borrell
    • 2
  1. 1.Universitat Politècnica de Catalunya - BarcelonaTechTerrassaSpain
  2. 2.Termo Fluids S.L.TerrassaSpain

Personalised recommendations