Advertisement

Turbulent Boundary Layers in Long Computational Domains

  • G. Eitel-Amor
  • R. Örlü
  • P. SchlatterEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

Wall-bounded turbulence emerges e.g. along the surface of moving ships and airplanes or in pipelines. The prediction of skin friction and drag is directly related to fuel consumption or the power needed to transport gases through pipelines, thereby emphasizing the practical relevance of wall turbulence.

Keywords

Direct Numerical Simulation Turbulent Boundary Layer Direct Numerical Simulation Data Supersonic Boundary Layer Turbulent Boundary Layer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chauhan, K.A., Monkewitz, P.A., Nagib, H.M.: Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404 (2009)CrossRefGoogle Scholar
  2. 2.
    Farabee, T.M., Casarella, M.J.: Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids 3, 2410–2420 (1991)CrossRefGoogle Scholar
  3. 3.
    Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Monkewitz, P.A., Chauhan, K.A., Nagib, H.M.: Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19, 115101 (2007)CrossRefGoogle Scholar
  5. 5.
    Nickels, T.B.: Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217–239 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Nickels, T.B., Marusic, I., Hafez, S., Chong, M.S.: Evidence of the \({k}_{1}^{-1}\) law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501 (2005)CrossRefGoogle Scholar
  7. 7.
    Örlü, R.: Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers. Ph.D. thesis, Department of Mechanics, KTH Stockholm, Sweden (2009)Google Scholar
  8. 8.
    Pirozzoli, S., Bernardini, M.: Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25, 021704 (2013)CrossRefGoogle Scholar
  9. 9.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Segalini, A., Örlü, R., Schlatter, P., Alfredsson, P.H., Rüedi, J.-D., Talamelli, A.: A method to estimate turbulence intensity and transverse taylor microscale in turbulent flows from spatially averaged hot-wire data. Exp. Fluids 51, 693–700 (2011)CrossRefGoogle Scholar
  11. 11.
    Wu, X., Moin, P.: Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22, 085105 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Linné FLOW Centre, KTH MechanicsStockholmSweden

Personalised recommendations