Advertisement

Hybrid LES–URANS Methodology for Wall–Bounded Flows

  • S. Schmidt
  • M. BreuerEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

Since wall-resolved LES suffers from very fine near-wall grid resolutions required (\(\varDelta y_{1st}^+ < 2\), \(\varDelta x^+\) = \({\fancyscript{O}}\)(50–150), \(\varDelta z^+\) = \({\fancyscript{O}}\)(15–40)), the idea to embed a near–wall (U)RANS region within a LES represents both, a specific type of hybrid approach and an enhanced kind of wall model.

Keywords

Reynolds Stress Model Laminar Separation Bubble Kolmogorov Length Scale Hybrid Methodology Algebraic Reynolds Stress Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Breuer, M., Jaffrézic, B., Arora, K.: Hybrid LES-RANS technique based on a one-equation near-wall model. J. Theoret. Comp. Fluid Dyn. 22(3–4), 157–187 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Breuer, M., Schmidt, S.: Refinement of a hybrid LES-URANS approach for non-equilibrium turbulent flows. In: THMT-7, Palermo, Italy, 24–27 Sept 2012Google Scholar
  3. 3.
    Burgmann, S.: Investigation of transitional separation bubbles using three-dimensional measurement techniques. PhD thesis, RWTH Aachen, Germany (2009)Google Scholar
  4. 4.
    Chen, H.C., Patel, V.C.: Near-wall turbulence models for complex flows including separation. AIAA J. 26(6), 641–648 (1988)CrossRefGoogle Scholar
  5. 5.
    Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)CrossRefGoogle Scholar
  6. 6.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)CrossRefGoogle Scholar
  7. 7.
    Jaffrézic, B., Breuer, M.: Application of an explicit algebraic Reynolds stress model within an Hybrid LES-RANS method. J. Flow Turbul. Combust. 81(3), 415–448 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jakirlić, S., Jovanović, J.: On unified boundary conditions for improved predictions of near-wall turbulence. J. Fluid Mech. 656, 530–539 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Lilly, D.K.: A proposed modification of the Germano subgrid scale closure model. Phys. Fluids A 43, 633–635 (1992)CrossRefGoogle Scholar
  10. 10.
    Radespiel, R., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J. 45(6), 1346–1356 (2007)CrossRefGoogle Scholar
  11. 11.
    Schumann, U.: Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys. 18, 376–404 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Selig, M., Guglielmo, J., Broeren, A., Giguére, P.: Summary of low-speed airfoil data, vol. 1. SoarTech Publications, Virginia Beach (1995)Google Scholar
  13. 13.
    Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Fluid MechanicsHelmut–Schmidt–UniversitätHamburgGermany

Personalised recommendations