Advertisement

Elements and Applications of Scale-Resolving Simulation Methods in Industrial CFD

  • F. MenterEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

Historically, industrial CFD simulations have been based on the Reynolds Averaged Navier-Stokes Equations (RANS). For many decades, the only alternative to RANS was Large-Eddy Simulation (LES), which has however failed to provide solutions for most flows of engineering relevance due to excessive computing power requirements for the simulation of wall-bounded flows.

Keywords

Large Eddy Simulation Detach Eddy Simulation RANS Model Large Eddy Simulation Model Wall Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252 (2000)Google Scholar
  2. 2.
    Menter, F.R., Egorov, Y.: Scale-adaptive simulation method for unsteady flow predictions. Part 1: theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Duda, B.M., Menter, F.R., Deck, S., Bezard, H., Hansen, T., Esteve, M.-J.: Application of the scale-adaptive simulation to a hot jet in cross flow. AIAA. J. 51(3), 674–685 (2013)Google Scholar
  4. 4.
    Langtry, R.B., Spalart, P.R.: Detached eddy simulation of a nose landing-gear cavity. In: IUTAM Bookseries, vol. 14 (2009)Google Scholar
  5. 5.
    Widenhorn, A., Noll, B., Aigner, M.: Numerical characterization of a gas turbine model combustor applying scale-adaptive simulation, GT2009-59038. In: Proceedings of ASME TURBO EXPO 2009Google Scholar
  6. 6.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  7. 7.
    Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Specification of LES inlet boundary condition using vortex method. In: 94th International Symposium on Turbulence, Heat and Mass Transfer, Antalya (2003)Google Scholar
  8. 8.
    Cokljat D., Caradi, D., Link, G., Lechner, R., Menter, F.R.: Embedded LES methodology for general-purpose CFD solvers. In: Proceedings of Turbulent Shear Flow Phenomena, Proceedings of 6th International Symposium on Turbulence and Shear Flow Phenomena, Seoul, Korea, 22–24 June 2009, pp. 1191–1196 (2009)Google Scholar
  9. 9.
    Menter F.R., Garbaruk, A., Smirnov, P.: Scale adaptive simulation with artificial forcing. In: Proceedings of 3rd Symposium on Hybrid RANS-LES Methods (2009)Google Scholar
  10. 10.
    Menter, F.R., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: Proceedings of Conference the Aerodynamics of Heavy Vehicles, Trucks, Busses and Trains, Asilomar, CA, Springer (2003)Google Scholar
  11. 11.
    Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A.: A new version of detached eddy simulation. Resistant to ambiguous grid densities. J. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gritskevich, M.S., Garbaruk, A.V., Schtze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k-shear stress transport model. J. Flow Turbul. Combust. 88(3), 431–449 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Menter, F.R., Gritskevich, M.S., Schtze, J.: Global vs. zonal approaches in hybrid RANS-LES turbulence modelling progress in hybrid RANS-LES modelling. Notes Numer. Fluid Mech. Multidiscip. Des. 117(2012), 15–28 (2012)CrossRefGoogle Scholar
  14. 14.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mont. Weather Rev. 91, 99–165 (1963)CrossRefGoogle Scholar
  15. 15.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure model. Phys. Fluids 4, 633–635 (1992)CrossRefGoogle Scholar
  16. 16.
    Schumann, U.: Subgrid scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comp. Phys. 18, 376 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  19. 19.
    Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Specification of LES inlet boundary condition using vortex method. In: 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya (2003)Google Scholar
  20. 20.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  21. 21.
    Henshaw, M.J.: M219 cavity case, verification and validation data for computational unsteady aerodynamics. Technical report RTO-TR-26, AC/323(AVT)TP/19 (2000)Google Scholar
  22. 22.
    Kurbatskii, K.A., Menter, F., Schuetze, J., Fujii, A.: Numerical simulation of transonic cavity noise using scale-adaptive simulation (SAS) turbulence model. In: Inter-Noise 2011, September 2011Google Scholar
  23. 23.
    Swalwell, K.E., Sheridan, J., Melbourne, W.H.: Frequency analysis of surface pressures on an airfoil after stall. AIAA Paper 2003–3416 (2003)Google Scholar
  24. 24.
    Egorov Y., Menter F.R., Cokljat, D.: Scale-adaptive simulation method for unsteady flow predictions. Part 2: application to aerodynamic flows. J. Flow Turbul. Combus. 85(1), 139–165 (2010)Google Scholar
  25. 25.
    Laschka, B., Ranke, H., Breitsamter, C.: Application of unsteady measurement techniques to vortical and separated flows. Z. Flugwiss. Weltraumforsch. 19, 90–108 (1995)Google Scholar
  26. 26.
    Westin, J., Alavyoon F., Andersson, L., Veber, P., Henriksson, M., Andersson, C.: Experiments and unsteady CFD-calculations of thermal mixing in a T-junction. OECD/NEA/IAEA Workshop on the Benchmarking of CFD Codes for Application to Nuclear Reactor Safety (CFD4NRS), Munich Germany, pp. 1–15 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ANSYS Germany GmbHOtterfingGermany

Personalised recommendations