Quantifying the Impact of Subgrid Scale Models in Actuator-Line Based LES of Wind Turbine Wakes in Laminar and Turbulent Inflow

  • H. SarlakEmail author
  • C. Meneveau
  • J. N. Sørensen
  • R. Mikkelsen
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)


While many subgrid-scale (SGS) models have, over the years, been proposed (see [6]), the effects of various SGS models in simulations of wind turbine wakes has not been documented in great detail yet. In this study, we explore such effects in simulations of single wind turbine under laminar and turbulent inflow conditions.


Wind Turbine Large Eddy Simulation Eddy Viscosity Wake Region Smagorinsky Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jimenez, A., Crespo, A., Migoya, E., Garcia, J.: Advances in large-eddy simulation of a wind turbine wake. J. Phys. Conf. Ser. 75, 012041 (2007)CrossRefGoogle Scholar
  2. 2.
    Troldborg, N., Sørensen, J.N., Mikkelsen, R.F.: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. J. Wind Energy 1(13), 86–99 (2010)CrossRefGoogle Scholar
  3. 3.
    Calaf, M., Meneveau, C., Meyers, J.: Large eddy simulation study of fully developed wind-turbine array boundary layers. Phy. Fluids 22(015110), 116 (2010)Google Scholar
  4. 4.
    Calaf, M., Parlange, M.B., Meneveau, C.: Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers. Phys. Fluids 23(12), 126603 (2011)CrossRefGoogle Scholar
  5. 5.
    Wu, Y., Porte-Agel, F.: Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Bound.-Layer Meteorol. 138, 345366 (2011)CrossRefGoogle Scholar
  6. 6.
    Sagaut, P.: Large-Eddy Simulation For Incompressible Flows—An Introduction, 3rd edn, 556 pp. Springer, New York (2005)Google Scholar
  7. 7.
    Sørensen, J.N., Shen, W.Z.: Numerical modeling of wind turbine wakes. J. Fluids Eng. 144, 393–399 (2002)CrossRefGoogle Scholar
  8. 8.
    Sagaut, P.: Simulations numeriques decoulements decolles avec des mod‘eles de sous-maille. Ph.D. thesis, University of Paris VI, France (1995)Google Scholar
  9. 9.
    Michelsen, J.A.: Basis3D—a platform for development of multiblock PDE solvers. Technical report AFM 92–05, Technical University of Denmark (1992)Google Scholar
  10. 10.
    Sørensen, N.N.: General purpose flow solver applied to flow over hills. Risø-R-827-(EN), RisøNational Laboratory, Denmark (1995)Google Scholar
  11. 11.
    Baetke, F., Werner, H.: Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners. J. Wind Eng. Ind. Aerod. 35, 129–147 (1990)CrossRefGoogle Scholar
  12. 12.
    Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273, 141–168 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • H. Sarlak
    • 1
    Email author
  • C. Meneveau
    • 2
  • J. N. Sørensen
    • 1
  • R. Mikkelsen
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark
  2. 2.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations