Generation of Intermittent Turbulent Inflow and Initial Conditions Based on Wavelet Construction Method

  • L. ZhouEmail author
  • J. Grilliat
  • A. Delgado
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)


In the current context of steady computational power increase, high-resolved unsteady simulations such as Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) are no longer restricted to academic usage, and becoming tools of interest for the industry.


Large Eddy Simulation Direct Numerical Simulation Direct Numerical Simulation Result Turbulent Intermittency Construction Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arneodo, A., Muzy, J.F., Roux., S.G.: Experimental analysis of self-similarity and random cascade processes: application to fully developed turbulence data. J. Phys. 2, 7(2), 363–370 (1997)Google Scholar
  2. 2.
    Arneodo, A., Bacry, E., Muzy, J.F.: Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 4142 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24(1), 395–458 (1992)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fung, J.C.H., Hunt, J.C.R., Malik, N.A., Perkins, R.J.: Kinematic simulation of homogeneous turbulence by unsteady random fourier modes. J. Fluid Mech. 236(1), 281–318 (1992)Google Scholar
  5. 5.
    Juneja, A., Lathrop, D.P., Sreenivasan, K.R., Stolovitzky, G.: Synthetic turbulence. Phys. Rev. E 49(6), 5179 (1994)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lee, S., Lele, S.K., Moin, P.: Simulation of spatially evolving turbulence and the applicability of taylors hypothesis in compressible flow. Phys. Fluids A: Fluid Dyn. 4, 1521 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mallat. S.G.: A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal. Mach. Intell. IEEE Trans. 11(7), 674–693 (1989)Google Scholar
  8. 8.
    Mandelbrot, B.B.: Intermittent turbulence in self-similar cascades- divergence of high moments and dimension of the carrier. J. Fluid Mech. 62(2), 331–358 (1974)CrossRefzbMATHGoogle Scholar
  9. 9.
    Meneveau, C., Sreenivasan, K.R.: The multifractal spectrum of the dissipation field in turbulent flows. Nucl. Phys. B-Proc. Suppl. 2, 49–76 (1987)CrossRefGoogle Scholar
  10. 10.
    Meneveau, C., Sreenivasan, K.R.: Simple multifractal cascade model for fully developed turbulence. Phys. Rev. lett. 59(13), 1424–1427 (1987)CrossRefGoogle Scholar
  11. 11.
    Rogallo, R.S.: Numerical experiments in homogeneous turbulence. Natl. Aeronaut. Space Adm. 81315, 94 (1981)Google Scholar
  12. 12.
    Schneider, K., Farge, M., Kevlahan, N.: Spatial intermittency in two-dimensional turbulence: a wavelet approach. Woods Hole Math. Perspect. Math. Phys. 34, 302–328 (2004)Google Scholar
  13. 13.
    Yoshimatsu, K., Okamoto, N., Schneider, K., Kaneda, Y., Farge, M.: Intermittency and scale-dependent statistics in fully developed turbulence. Phys. Rev. E 79(2), 026303 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Lehrstuhl Für Strömungsmechanik (LSTM)FAUErlangen-NurembergGermany

Personalised recommendations