Advertisement

Underresolved Turbulence Simulations with Stabilized High Order Discontinuous Galerkin Methods

  • Andrea D. BeckEmail author
  • Gregor J. Gassner
  • Thomas Bolemann
  • Hannes Frank
  • Florian Hindenlang
  • Claus-Dieter Munz
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 20)

Abstract

Due to the broad range of spatial and temporal structures of turbulent flows, the resolution requirements for a fully resolved representation of all scales are prohibitively expensive and make Direct Numerical Simulations (DNS) impossible in all but a very limited number of cases.

Keywords

Direct Numerical Simulation Discontinuous Galerkin Discontinuous Galerkin Method Spectral Element Method Direct Numerical Simulation Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altmann, C., Beck, A., Hindenlang, F., Staudenmaier, M., Gassner, G., Munz, C.-D.: An effcient high performance parallelization of a discontinuous Galerkin spectral element method. In: Keller, R., Kramer, D., Weiß, J.-P. (eds.) Facing the Multicore—Challenge III, pp. 37–47. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Beck, A., Gassner, G., Munz, C.-D.: High order and underresolution. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Springer, New York (2013)Google Scholar
  3. 3.
    Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452 (1983)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cockburn, B., Karniadakis, G. E., Shu, C.-W.: Discontinuous Galerkin Methods. In: Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Fauconnier, D., Dick, E., Bogey, C., Bailly, C.: Assessment of large eddy simulation based on relaxation filtering. In: Eaton, J., Friedrich, R. (eds.) Turbulence and Shear Flow Phenomena, 7th International symposium, Proceedings, 2011Google Scholar
  6. 6.
    Fröhlich, J., Rodi, W., Kessler, Ph, Parpais, S., Bertoglio, J.P., Laurence, D.: Large eddy simulation of flow around circular cylinders on structured and unstructured grids. In: Hirschel, E.H. (ed.) Numerical Flow Simulation I. Notes on Numerical Fluid Mechanics, Vieweg (1998)Google Scholar
  7. 7.
    Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comp. Fluid Dyn. (2012). doi: 10.1007/s00162-011-0253-7
  8. 8.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Hickel, S.: Implicit turbulence modeling for large-eddy simulation, Ph.D. thesis, TU München (2007)Google Scholar
  10. 10.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids. 61, 86–93 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and application. J. Comput. Phys. 191, 249–264 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at ReD = 3900. Phys. Fluids 12, 403 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, X., Karamanos, G.-S., Karniadakis, E.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Meyer, M., Hickel, S., Adams, N.A.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Fl. 31, (2010)Google Scholar
  16. 16.
    Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids. 39, 1083–1094 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Stanescu, D., Kopriva, D.A., Hussaini, M.Y.: Dispersion analysis for discontinuous spectral element methods. J. Sci. Compt. 15, 149–171 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrea D. Beck
    • 1
    Email author
  • Gregor J. Gassner
    • 1
  • Thomas Bolemann
    • 1
  • Hannes Frank
    • 1
  • Florian Hindenlang
    • 1
  • Claus-Dieter Munz
    • 1
  1. 1.Institute for Aerodynamics and GasdynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations