Fast Human Activity Recognition in Lifelogging

  • Stefan Terziyski
  • Rami Albatal
  • Cathal Gurrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8936)


This paper addresses the problem of fast Human Activity Recognition (HAR) in visual lifelogging. We identify the importance of visual features related to HAR and we specifically evaluate the HAR discrimination potential of Colour Histograms and Histogram of Oriented Gradients. In our evaluation we show that colour can be a low-cost and effective means of low-cost HAR when performing single-user classification. It is also noted that, while much more efficient, global image descriptors perform as well or better than local descriptors in our HAR experiments. We believe that both of these findings are due to the fact that a user’s lifelog is rich in reoccurring scenes and environments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurrin, C., Smeaton, A.F., Doherty, A.R.: LifeLogging: Personal Big Data. Foundations and Trends® in Information Retrieval 8, 1–125 (2014)CrossRefGoogle Scholar
  2. 2.
    Mann, S.: Continuous lifelong capture of personal experience with Eye-Tap. In: Proceedings of the the 1st ACM Workshop on Continuous Archival and Retrieval of Personal Experiences, pp. 1–21. ACM, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Bell, G., Gemmell, J.: Total Recall: How the E-Memory Revolution Will Change Everything. Dutton (2009)Google Scholar
  4. 4.
    Caprani, N., Conaire, C., Kalnikaite, V., Gurrin, C., Smeaton, A.F., Doherty, A.R., O’Connor, N.E.: PassivelyRecognising Human Activities Through Lifelogging. Comput. Hum. Behav. 27(5), 1948–1958 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, P., Smeaton, A.F.: Using Visual Lifelogs to Automatically Characterize Everyday Activities. Inf. Sci. 230, 147–161 (2013)CrossRefGoogle Scholar
  6. 6.
    Hamm, J., Stone, B., Belkin, M., Dennis, S.: Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams. In: Uhler, D., Mehta, K., Wong, J.L. (eds.) MobiCASE 2012. LNICST, vol. 110, pp. 328–342. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Krueger, A.B., Schkade, D.A., Schwarz, N., Kahneman, D., Stone, A.A.: A Survey Method for Characterizing Daily Life Experience: The Day Reconstruction Method. Science 306(5702), 1776–1780 (2004)CrossRefGoogle Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)Google Scholar
  9. 9.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Empowering Visual Categorization with the GPU. IEEE Transactions on Multimedia 13(1), 60–70 (2011)CrossRefGoogle Scholar
  10. 10.
    Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., van der Walt, S., Yu, T.: Scikit-image: Image processing in Python. PeerJ 2, e453 (2014)Google Scholar
  11. 11.
    Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Pedregosa, F., Duchesnay, E.: Scikit-learn:Machine Learning in Python. Journal of Machine Learning Researc 12, 2825–2830 (2011)zbMATHGoogle Scholar
  12. 12.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating ColorDescriptors for Object and Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Terziyski
    • 1
  • Rami Albatal
    • 1
  • Cathal Gurrin
    • 1
  1. 1.Insight Centre for Data AnalyticsDublin City UniversityDublinIreland

Personalised recommendations