Interactive Known-Item Search Using Semantic Textual and Colour Modalities

  • Zhenxing Zhang
  • Rami Albatal
  • Cathal Gurrin
  • Alan F. Smeaton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8936)

Abstract

In this paper, we present an interactive video browser tool for our participation in the fourth video search showcase event. Learning from previous experience, this year we focused on building an advanced interactive interface which allows users to quickly generate and combine different styles of query to find relevant video segments. The system offers the user a comprehensive search interface which has as key features: keyword search, color-region search and human face filtering.

Keywords

Multimedia Indexing Deep Learning Human Face Detection Interactive Interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scott, D., et al.: Audio-Visual Classification Video Browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part II. LNCS, vol. 8326, pp. 398–401. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Malisiewicz, T., Gupta, A., Efros, A.A.: Ensemble of Exemplar-SVMs for Object Detection and Beyond. In: 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain (2011)Google Scholar
  3. 3.
    Mishra, A., Alahari, K., Jawahar, C.V.: Image Retrieval using Textual Cues. In: 2013 IEEE International Conference on Computer Vision (ICCV), Sydney, Australia (2013)Google Scholar
  4. 4.
    Lokoč, J., Blažek, A., Skopal, T.: Signature-based video browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014, Part II. LNCS, vol. 8326, pp. 415–418. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Mathias, L., Chatzichristofis, S.A.: Lire: Lucene Image Retrieval An Extensible Java CBIR Library. In: Proceedings of the 16th ACM International Conference on Multimedia, Vancouver, Canada, pp. 1085–1088 (2008)Google Scholar
  6. 6.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, CVPR, pp. 511–518 (2001)Google Scholar
  7. 7.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)Google Scholar
  8. 8.
    Jia, Y.: Caffe: An Open Source Convolutional Architecture for Fast Feature Embedding, http://caffe.berkeleyvision.org/ (last accessed September 2013)
  9. 9.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, CVPR (2009)Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of the IEEE Computer Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zhenxing Zhang
    • 1
  • Rami Albatal
    • 1
  • Cathal Gurrin
    • 1
  • Alan F. Smeaton
    • 1
  1. 1.Insight Centre for Data Analytics, School of ComputingDublin City University GlasnevinCo. DublinIreland

Personalised recommendations