IMOTION — A Content-Based Video Retrieval Engine

  • Luca Rossetto
  • Ivan Giangreco
  • Heiko Schuldt
  • Stéphane Dupont
  • Omar Seddati
  • Metin Sezgin
  • Yusuf Sahillioğlu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8936)

Abstract

This paper introduces the IMOTION system, a sketch-based video retrieval engine supporting multiple query paradigms. For vector space retrieval, the IMOTION system exploits a large variety of low-level image and video features, as well as high-level spatial and temporal features that can all be jointly used in any combination. In addition, it supports dedicated motion features to allow for the specification of motion within a video sequence. For query specification, the IMOTION system supports query-by-sketch interactions (users provide sketches of video frames), motion queries (users specify motion across frames via partial flow fields), query-by-example (based on images) and any combination of these, and provides support for relevance feedback.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giangreco, I., Kabary, I.A., Schuldt, H.: ADAM — A Database and Information Retrieval System for Big Multimedia Collections. In: Proc. Int. Congr. on Big Data 2014 (BigData 2014), Anchorage, USA. IEEE (2014)Google Scholar
  2. 2.
    IMOTION project, https://imotion-project.eu/
  3. 3.
    Kasutani, E., Yamada, A.: The MPEG-7 Color Layout Descriptor: A Compact Image Feature Description for High-Speed Image/Video Segment Retrieval. In: Proc. Int. Conf. on Image Processing (ICIP 2001), Thessaloniki, Greece, pp. 674–677. IEEE (2001)Google Scholar
  4. 4.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proc. Conf. on Neural Information Processing Systems (NIPS 2012), Lake Tahoe, USA, pp. 1097–1105 (2012)Google Scholar
  5. 5.
    Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: A Large Video Database for Human Motion Recognition. In: Proc. Int. Conf. on Computer Vision (ICCV 2011), Barcelona, Spain, pp. 2556–2563. IEEE (2011)Google Scholar
  6. 6.
    Park, D.K., Jeon, Y.S., Won, C.S.: Efficient Use of Local Edge Histogram Descriptor. In: Proc. Ws. on Multimedia, Los Angeles, USA, pp. 51–54. ACM (2000)Google Scholar
  7. 7.
    Rossetto, L., Giangreco, I., Schuldt, H.: Cineast: A Multi-Feature Sketch-Based Video Retrieval Engine. In: Proc. Int. Symp. on Multimedia (ISM 2014), Taichung, Taiwan. IEEE (December 2014)Google Scholar
  8. 8.
    Russakovsky, O., Deng, J., Su, H., et al.: ImageNet Large Scale Visual Recognition Challenge. CoRR, abs/1409.0575 (2014)Google Scholar
  9. 9.
    Schüldt, C., Laptev, I., Caputo, B.: Recognizing Human Actions: A Local SVM Approach. In: Proc. Int. Conf. on Pattern Recognition (ICPR 2004), Cambridge, England, pp. 32–36. IEEE (2004)Google Scholar
  10. 10.
    Soomro, K., Zamir, A.R., Shah, M.: UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild. CoRR, abs/1212.0402 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luca Rossetto
    • 1
  • Ivan Giangreco
    • 1
  • Heiko Schuldt
    • 1
  • Stéphane Dupont
    • 2
  • Omar Seddati
    • 2
  • Metin Sezgin
    • 3
  • Yusuf Sahillioğlu
    • 3
  1. 1.Databases and Information Systems Research Group, Department of Mathematics and Computer ScienceUniversity of BaselSwitzerland
  2. 2.Research Center in Information TechnologiesUniversité de MonsBelgium
  3. 3.Intelligent User Interfaces LabKoç UniversityTurkey

Personalised recommendations