Skip to main content

Wave Power: Climate Change Mitigation and Adaptation

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Wave energy has a great potential in many coastal areas thanks to a number of advantages: the abundant resource, with the highest energy density of all renewables, leading to higher availability factors than, e.g., wind or solar energy, and the low environmental and particularly visual impact, not least in the case of offshore floating wave energy converters (WECs). In addition, a novel advantage will be investigated in this work: the possibility of a synergetic use for carbon-free energy production and coastal protection. All in all, these advantages make wave energy a promising alternative to conventional energy sources. In this chapter the fundamentals of the wave resource and its characterization are outlined. The technologies for wave energy conversion are classified according to three criteria, the most representative WECs are presented, and the technological challenges discussed. Next, the environmental impacts of wave energy extraction are analyzed, with a focus on the reduction of coastal erosion.

If there are two main strategies to cope with climate change, mitigation and adaptation, wave farms participate on both. Indeed, wave energy contributes to mitigating climate change by two means, one acting on the cause, the other on the effect: (i) by bringing down carbon emissions (cause) through its production of renewable energy and (ii) by reducing coastal erosion (effect). Given that one of the causes of climate change is precisely coastal erosion – through sea-level rise and increased storminess – the contribution of wave farms to its mitigation is indeed welcome. As for adaptation, wave farms – which typically consist of floating WECs – adapt naturally to sea-level rise; this is a major advantage relative to conventional coastal defense schemes, based on fixed structures (seawalls, detached breakwaters, groynes, etc.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Marine renewable energies include both ocean energy and offshore wind energy. Ocean energy comprises essentially wave and tidal energy, but also Ocean Thermal Energy Conversion (OTEC) and salinity gradient energy.

References

  • Abanades J, Greaves D, Iglesias G (2014a) Coastal defence through wave farms. Coast Eng 91:299–307

    Article  Google Scholar 

  • Abanades J, Greaves D, Iglesias G (2014b) Wave farm impact on the beach profile: a case study. Coast Eng 86:36–44

    Article  Google Scholar 

  • Abanades J, Greaves D, Iglesias G (2015a) Wave farm impact on beach modal state. Mar Geol 361:126–135

    Article  Google Scholar 

  • Abanades J, Greaves D, Iglesias G (2015b) Coastal defence using wave farms: the role of farm-to-coast distance. Renew Energy 75:572–582

    Article  Google Scholar 

  • Arena F, Fiamma V, Laface V, Malara G, Romolo A, Viviano A, Sannino G, Carillo A (2013) Installing U-OWC devices along Italian coasts. In: ASME 2013 32nd international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers, pp V008T009A061-V008T009A061

    Google Scholar 

  • Astariz S, Iglesias G (2014) Wave energy vs. other energy sources: a reassessment of the economics. Int J Green Energy, (in press)

    Google Scholar 

  • Astariz S, Iglesias G (2015) The economics of wave energy: a review. Renew Sustain Energy Rev 45:397–408

    Article  Google Scholar 

  • Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015a) Towards the optimal design of a co-located wind-wave farm. Energy 84:15–24

    Article  Google Scholar 

  • Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015b) Co-located wind-wave farm synergies (operation & maintenance): a case study. Energy Convers Manag 91:63–75

    Article  Google Scholar 

  • Astariz S, Perez-Collazo C, Abanades J, Iglesias G (2015c) Co-located wave-wind farms: economic assessment as a function of layout. Renew Energy 83:837

    Google Scholar 

  • Austin M, Scott T, Brown J, Brown J, MacMahan J, Masselink G, Russell P (2010) Temporal observations of rip current circulation on a macro-tidal beach. Cont Shelf Res 30(9):1149–1165

    Article  Google Scholar 

  • AWS Ocean Energy (2015) AWS Ocean Energy web page

    Google Scholar 

  • Bahaj AS (2011) Generating electricity from the oceans. Renew Sustain Energy Rev 15(7):3399–3416

    Article  MathSciNet  Google Scholar 

  • Baldock TE, Alsina JA, Caceres I, Vicinanza D, Contestabile P, Power H, Sanchez-Arcilla A (2011) Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves. Coast Eng 58(2):214–227

    Article  Google Scholar 

  • Berkhoff J (1974) Computation of combined refraction-diffraction. Delft Hydraulics Laboratory, Delft

    Google Scholar 

  • Bernhoff H, Sjöstedt E, Leijon M (2006) Wave energy resources in sheltered sea areas: a case study of the Baltic Sea. Renew Energy 31(13):2164–2170

    Article  Google Scholar 

  • Cameron L, Doherty R, Henry A, Doherty K, Van’t Hoff J, Kaye D, Naylor D, Bourdier S, Whittaker T (2010) Design of the next generation of the Oyster wave energy converter. In: 3rd international conference on ocean energy

    Google Scholar 

  • Carballo R, Iglesias G (2012) A methodology to determine the power performance of wave energy converters at a particular coastal location. Energy Convers Manag 61:8–18

    Article  Google Scholar 

  • Carballo R, Iglesias G (2013) Wave farm impact based on realistic wave-WEC interaction. Energy 51:216–229

    Article  Google Scholar 

  • Carballo R, Sánchez M, Ramos V, Fraguela J, Iglesias G (2015) The intra-annual variability in the performance of wave energy converters: a comparative study in N Galicia (Spain). Energy 82:138

    Article  Google Scholar 

  • Castelle B, Marieu V, Bujan S, Splinter KD, Robinet A, Sénéchal N, Ferreira S (2015) Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: beach and dune erosion and megacusp embayments. Geomorphology 238:135–148

    Article  Google Scholar 

  • Chaplin J, Farley F, Rainey R (2007) Power conversion in the ANACONDA WEC. In: Proceedings of the 22nd international workshop on water waves and floating bodies

    Google Scholar 

  • Chini N, Stansby P, Leake J, Wolf J, Roberts-Jones J, Lowe J (2010) The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast Eng 57(11):973–984

    Article  Google Scholar 

  • CISCAG (2011) Shoreline management plan Cornwall and Isles of Scilly Coastal Advisory Group. Available

    Google Scholar 

  • Clément A, McCullen P, Falcão AFdO, Fiorentino A, Gardner F, Hammarlund K, Lemonis G, Lewis T, Nielsen K, Petroncini S, Pontes MT, Schild P, Sjöström B, Sørensen HC, Thorpe TW (2002) Wave energy in Europe: current status and perspectives. Renew Sustain Energy Rev 6(5):405–431

    Article  Google Scholar 

  • de Sousa Prado MG, Gardner F, Damen M, Polinder H (2006) Modelling and test results of the Archimedes wave swing. Proc Inst Mech Eng Part A J Power and Energy 220(8):855–868

    Article  Google Scholar 

  • Defne Z, Haas KA, Fritz HM (2009) Wave power potential along the Atlantic coast of the southeastern USA. Renew Energy 34(10):2197–2205

    Article  Google Scholar 

  • DEFRA (2015) Central government funding for flood and coastal erosion risk management in England. Available

    Google Scholar 

  • Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. J Power Energy 223(8):887–902

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res Oceans (1978–2012) 99(C12):24821–24852

    Article  Google Scholar 

  • EU-OEA (2010) Oceans of energy. European ocean energy roadmap 2010–2050. European Ocean Energy Association, Bietlot, 36 pp. Available at: http://www.eu-oea.com/wp-content/uploads/2012/02/EUOEA-Roadmap.pdf

  • European Commission (2007) A European Strategic Energy Technology Plan (SET-Plan)–towards a low-carbon future. 723

    Google Scholar 

  • EUROSION (2004) EUROSION. [Online]. Available at: http://www.eurosion.org

  • EVE (2014) Ente Vasco de la Energia

    Google Scholar 

  • EWEA, ECN, 3E, SOW (2012) Delivering offshore electricty to the EU. Spatial planning of offshore renewable energies and electricity grid infrastrutures in an integrated EU maritime policy. 80 pp. Available at: www.seanergy2020.eu

  • Falcão AdO (2000) The shoreline OWC wave power plant at the Azores. In: Proceedings of the fourth European wave energy conference, Aalborg, pp 42–48

    Google Scholar 

  • Falcão AFO (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14(3):899–918

    Article  Google Scholar 

  • Falnes J (2007) A review of wave-energy extraction. Mar Struct 20(4):185–201

    Article  Google Scholar 

  • Fernandez H, Iglesias G, Carballo R, Castro A, Fraguela JA, Taveira-Pinto F, Sanchez M (2012) The new wave energy converter WaveCat: concept and laboratory tests. Mar Struct 29(1):58–70

    Article  Google Scholar 

  • Folley M, Whittaker T (2009) Analysis of the nearshore wave energy resource. Renew Energy 34(7):1709–1715

    Article  Google Scholar 

  • Folley M, Babarit A, Child B, Forehand D, O’Boyle L, Silverthorne K, Spinneken J, Stratigaki V, Troch P (2012) A review of numerical modeling of wave energy converter arrays. In: International conference on ocean, offshore and arctic engineering (OMAE 2012). ASME, pp 1–11

    Google Scholar 

  • Galappatti G, Vreugdenhil C (1985) A depth-integrated model for suspended sediment transport. J Hydraul Res 23(4):359–377

    Article  Google Scholar 

  • Gonçalves M, Martinho P, Guedes Soares C (2014) Wave energy conditions in the western French coast. Renew Energy 62:155–163

    Article  Google Scholar 

  • Gonzalez-Santamaria R, Zou Q-P, Pan S (2013) Impacts of a wave farm on waves, currents and coastal morphology in south west England. Estuar Coasts 38(1):1–14

    Google Scholar 

  • Haigh ID, Wadey MP, Gallop SL, Loehr H, Nicholls RJ, Horsburgh K, Brown JM, Bradshaw E (2015) A user-friendly database of coastal flooding in the United Kingdom from 1915–2014. Sci Data 2:150021

    Article  Google Scholar 

  • Hasselmann K (1971) On the mass and momentum transfer between short gravity waves and larger-scale motions. J Fluid Mech 50(01):189–205

    Article  MATH  Google Scholar 

  • Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy 31(2):271–283

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Holthuijsen L, Booij N, Herbers T (1989) A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coast Eng 13(1):23–54

    Article  Google Scholar 

  • Huthnance J, Mieszkowska N (2010) Charting progress 2 feeder report: ocean processes. The Scottish Govt., Edinburgh, (UK)

    Google Scholar 

  • Iglesias G, Abanades J (2014) Characterisation of the wave resource: the crucial points. In: RENEW 1st international conference on renewable energies offshore, Lisbon

    Google Scholar 

  • Iglesias G, Carballo R (2009) Wave energy potential along the Death Coast (Spain). Energy 34(11):1963–1975

    Article  Google Scholar 

  • Iglesias G, Carballo R (2010a) Wave energy and nearshore hot spots: the case of the SE Bay of Biscay. Renew Energy 35(11):2490–2500

    Article  Google Scholar 

  • Iglesias G, Carballo R (2010b) Wave power for la isla bonita. Energy 35(12):5013–5021

    Article  Google Scholar 

  • Iglesias G, Carballo R (2010c) Offshore and inshore wave energy assessment: Asturias (N Spain). Energy 35(5):1964–1972

    Article  Google Scholar 

  • Iglesias G, Carballo R (2011) Choosing the site for the first wave farm in a region: a case study in the Galician Southwest (Spain). Energy 36(9):5525–5531

    Article  Google Scholar 

  • Iglesias G, Carballo R (2014) Wave farm impact: the role of farm-to-coast distance. Renew Energy 69:375–385

    Article  Google Scholar 

  • Iglesias G, Carballo R, Castro A, Fraga B (2008) Development and design of the WaveCat™ energy converter. Coast Eng:3970–3982

    Google Scholar 

  • Iglesias G, López M, Carballo R, Castro A, Fraguela JA, Frigaard P (2009) Wave energy potential in Galicia (NW Spain). Renew Energy 34(11):2323–2333

    Article  Google Scholar 

  • Iglesias G, Alvarez M, García P (2010) Wave energy converters. In: Encyclopedia of life support systems (EOLSS). UNESCO, Paris

    Google Scholar 

  • Jeffrey H, Sedgwick J (2011) ORECCA. European offshore renewable energy roadmap. 201 pp. Available at: http://www.orecca.eu/

  • Johnson R (1997) A modern introduction to the mathematical theory of water waves, vol 19. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kendon M, McCarthy M (2015) The UK’s wet and stormy winter of 2013/2014. Weather 70(2):40–47

    Article  Google Scholar 

  • Kofoed JP, Frigaard P, Friis-Madsen E, Sørensen HC (2006) Prototype testing of the wave energy converter. Renew Energy 31(2):181–189

    Article  Google Scholar 

  • Kramer M, Marquis L, Frigaard P (2011) Performance evaluation of the wavestar prototype. In: The 9th European wave and tidal energy conference: EWTEC 2011

    Google Scholar 

  • Lenee-Bluhm P, Paasch R, Özkan-Haller HT (2011) Characterizing the wave energy resource of the US Pacific Northwest. Renew Energy 36(8):2106–2119

    Article  Google Scholar 

  • Longuet-Higgins MS, Stewart R (1961) The changes in amplitude of short gravity waves on steady non-uniform currents. J Fluid Mech 10(04):529–549

    Article  MathSciNet  MATH  Google Scholar 

  • López I, Iglesias G (2014) Efficiency of OWC wave energy converters: a virtual laboratory. Appl Ocean Res 44:63–70

    Article  Google Scholar 

  • López I, Pereiras B, Castro F, Iglesias G (2014) Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Appl Energy 127:105–114

    Article  Google Scholar 

  • Mann LD (2011) Application of ocean observations & analysis: the CETO wave energy project. In: Operational oceanography in the 21st century. Springer, Heidelberg, pp 721–729

    Google Scholar 

  • Marquis L, Kramer M, Frigaard P (2010) First power production figures from the wave star roshage wave energy converter. In: Proceedings of the international conference on ocean energy (ICOE)

    Google Scholar 

  • Masselink G, Evans D, Hughes MG, Russell P (2005) Suspended sediment transport in the swash zone of a dissipative beach. Mar Geol 216(3):169–189

    Article  Google Scholar 

  • McCormick ME (1981) Ocean wave energy conversion. Wiley-Interscience, New York

    Google Scholar 

  • Mehlum E (1986) Tapchan. In: Hydrodynamics of ocean wave-energy utilization. Springer, Heidelberg, pp 51–55

    Google Scholar 

  • Mendoza E, Silva R, Zanuttigh B, Angelelli E, Lykke Andersen T, Martinelli L, Nørgaard JQH, Ruol P (2014) Beach response to wave energy converter farms acting as coastal defence. Coast Eng 87:97–111

    Article  Google Scholar 

  • Millar DL, Smith HCM, Reeve DE (2007) Modelling analysis of the sensitivity of shoreline change to a wave farm. Ocean Eng 34(5–6):884–901

    Article  Google Scholar 

  • Moccia J, Arapogianni A, Wilkes J, Kjaer C, Gruet R (2011) Pure power. Wind energy targets for 2020 and 2030. European Wind Energy Association, Brussels, 97 pp. Available at: http://www.ewea.org

  • Ocean Power Technologies Inc (2014) OPT web page

    Google Scholar 

  • Oceans U. A. o. t. (2011) Human settlements on the coast [Online]. Available at: http://www.oceansatlas.org/servlet/CDSServlet?status=ND0xODc3JjY9ZW4mMzM9KiYzNz1rb3M. Accessed 21 May 2015

  • Palha A, Mendes L, Fortes CJ, Brito-Melo A, Sarmento A (2010) The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices. Renew Energy 35(1):62–77

    Article  Google Scholar 

  • Pelamis Wave Power (2014) Pelamis wave power web page

    Google Scholar 

  • Perez Collazo C, Astariz S, Abanades J, Greaves D, Iglesias G (2014) Co-located wave and offshore wind farms: a preliminary case study of an hybrid array. In: International conference in coastal engineering (ICCE)

    Google Scholar 

  • Pérez-Collazo C, Greaves D, Iglesias G (2015) A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 42:141–153

    Article  Google Scholar 

  • Photobrooks (2014) Photobrooks web page

    Google Scholar 

  • Pontes M, Athanassoulis G, Barstow S, Bertotti L, Cavaleri L, Holmes B, Mollison D, Pires H (1998) The European wave energy resource. In: 3rd European wave energy conference, Patras

    Google Scholar 

  • Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Reeve DE, Chen Y, Pan S, Magar V, Simmonds DJ, Zacharioudaki A (2011) An investigation of the impacts of climate change on wave energy generation: the Wave Hub, Cornwall, UK. Renew Energy 36(9):2404–2413

    Article  Google Scholar 

  • Roelvink J, Reniers A, Van Dongeren A, Van Thiel de Vries J, Lescinski J, McCall R (2006) XBeach model description and manual. In: UNESCO-IHE Institute for Water Education. (Accessed: Roelvink J, Reniers A, Van Dongeren A, Van Thiel de Vries J, Lescinski J, McCall R)

    Google Scholar 

  • Roelvink D, Reniers A, van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152

    Article  Google Scholar 

  • Rusu L, Guedes Soares C (2012) Wave energy assessments in the Azores islands. Renew Energy 45:183–196

    Article  Google Scholar 

  • Rusu E, Guedes Soares C (2013) Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renew Energy 58:34–49

    Article  Google Scholar 

  • Scott T, Masselink G, Russell P (2011) Morphodynamic characteristics and classification of beaches in England and Wales. Mar Geol 286(1–4):1–20

    Article  Google Scholar 

  • Senechal N, Coco G, Castelle B, Marieu V (2015) Storm impact on the seasonal shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). Geomorphology 228:448–461

    Article  Google Scholar 

  • Sibley A, Cox D, Titley H (2015) Coastal flooding in England and Wales from Atlantic and North Sea storms during the 2013/2014 winter. Weather 70(2):62–70

    Article  Google Scholar 

  • Slingo J, Belcher S, Scaife A, McCarthy M, Saulter A, McBeath K, Jenkins A, Huntingford C, Marsh T, Hannaford J (2014) The recent storms and floods in the Met. Office, Exeter (UK)

    Google Scholar 

  • Smith HCM, Pearce C, Millar DL (2012) Further analysis of change in nearshore wave climate due to an offshore wave farm: an enhanced case study for the Wave Hub site. Renew Energy 40(1):51–64

    Article  Google Scholar 

  • Spencer T, Brooks SM, Evans BR, Tempest JA, Möller I (2015) Southern North Sea storm surge event of 5 December 2013: water levels, waves and coastal impacts. Earth Sci Rev 146:120–145

    Article  Google Scholar 

  • Stopa JE, Cheung KF, Chen Y-L (2011) Assessment of wave energy resources in Hawaii. Renew Energy 36(2):554–567

    Article  Google Scholar 

  • Stoutenburg ED, Jenkins N, Jacobson MZ (2010) Power output variations of co-located offshore wind turbines and wave energy converters in California. Renew Energy 35(12):2781–2791

    Article  Google Scholar 

  • Tedd J, Kofoed JP (2009) Measurements of overtopping flow time series on the Wave Dragon, wave energy converter. Renew Energy 34(3):711–717

    Article  Google Scholar 

  • Thorpe TW (1999) A brief review of wave energy. Harwell Laboratory, Energy Technology Support Unit, Oxford (UK)

    Google Scholar 

  • Thorpe T (2001) The wave energy programme in the UK and the European wave energy network

    Google Scholar 

  • Tolman HL (2002) User manual and system documentation of WAVEWATCH-III version 2.22

    Google Scholar 

  • Torre-Enciso Y, Ortubia I, López de Aguileta L, Marqués J (2009) Mutriku wave power plant: from the thinking out to the reality. In: Proceedings of the 8th European wave and tidal energy conference, pp 319–329

    Google Scholar 

  • Valério D, Beirão P, da Costa JS (2007) Optimisation of wave energy extraction with the Archimedes Wave Swing. Ocean Eng 34(17):2330–2344

    Article  Google Scholar 

  • Van Thiel de Vries J (2009) Dune erosion during storm surges. PhD thesis, Delft University of Technology

    Google Scholar 

  • Veigas M, López M, Iglesias G (2014) Assessing the optimal location for a shoreline wave energy converter. Appl Energy 132:404–411

    Article  Google Scholar 

  • Vicinanza D, Frigaard P (2008) Wave pressure acting on a seawave slot-cone generator. Coast Eng 55(6):553–568

    Article  Google Scholar 

  • Vicinanza D, Margheritini L, Contestabile P, Kofoed JP, Frigaard P (2008) Seawave slot-cone generator: an innovative caisson breakwaters for energy production. In: The international conference on coastal engineering, pp 3694–3705

    Google Scholar 

  • Vicinanza D, Contestabile P, Ferrante V (2013) Wave energy potential in the north-west of Sardinia (Italy). Renew Energy 50:506–521

    Article  Google Scholar 

  • Vidal C, Méndez Fernando J, Díaz G, Legaz R (2007) Impact of Santoña WEC installation on the littoral processes. In: Proceedings of the 7th European wave and tidal energy conference, Porto

    Google Scholar 

  • Wadey M, Haigh I, Brown J (2014) A century of sea level data and the UK’s 2013/14 storm surges: an assessment of extremes and clustering using the Newlyn tide gauge record. Ocean Sci Discuss 11(4):1995–2028

    Article  Google Scholar 

  • Wave Dragon AS (2005) Wave Dragon web page

    Google Scholar 

  • Zanuttigh B, Angelelli E (2013) Experimental investigation of floating wave energy converters for coastal protection purpose. Coast Eng 80:148–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Iglesias, G., Abanades, J. (2017). Wave Power: Climate Change Mitigation and Adaptation. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_81

Download citation

Publish with us

Policies and ethics