Skip to main content

Photocatalytic Water Splitting and Carbon Dioxide Reduction

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Photocatalytic water splitting, which involves the simultaneous reduction and oxidation of water-producing hydrogen and oxygen gas, provides a means of harnessing the sun’s power to generate an energy source in a clean and renewable fashion. Photocatalytic reduction of carbon dioxide to form hydrocarbons such as methane not only promises reduced emission of an important greenhouse but also a new source of fuel. Concerns over the effects of global climate change and the eventual demise of fossil fuels make the search for clean alternative energy sources a top priority. This chapter details the progress in these two increasingly important areas: hydrogen production by photocatalytic water splitting and photocatalytic carbon dioxide reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209

    Article  Google Scholar 

  • Anfuso CL, Xiao D, Ricks AM et al (2012) Orientation of a series of CO2 reduction catalysts on single crystal TiO2 probed by phase-sensitive vibrational Sum frequency generation spectroscopy (PS-VSFG). J Phys Chem C 116:24107–24114

    Article  Google Scholar 

  • Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66

    Article  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag A 41:237–276

    Article  Google Scholar 

  • Bae ST, Shin H, Kim JY et al (2008) Roles of MgO coating layer on mesoporous TiO2/ITO electrode in a photoelectrochemical cell for water splitting. J Phys Chem C 112:9937–9942

    Article  Google Scholar 

  • Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    Article  Google Scholar 

  • Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrog Energy 28:267–284

    Article  Google Scholar 

  • Behar D, Dhanasekaran T, Neta P et al (1998) Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies. J Phys Chem A 102:2870–2877

    Article  Google Scholar 

  • Benson EE, Kubiak CP, Sathrum AJ et al (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    Article  Google Scholar 

  • Bhattacharyya K, Varma S, Tripathi AK et al (2008) Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. J Phys Chem C 112:19102–19112

    Article  Google Scholar 

  • Bonin J, Robert M, Routier M (2014a) Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J Am Chem Soc 136:16768–16771

    Article  Google Scholar 

  • Bonin J, Robert M, Routier M (2014b) Homogeneous photocatalytic reduction of CO2 to CO using iron(0) porphyrin catalysis: mechanism and intrinsic limitations. ChemCatChem 6:3200–3207

    Article  Google Scholar 

  • Boston DJ, Xu C, Armstrong DW et al (2013) Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts. J Am Chem Soc 135:16252–16255

    Article  Google Scholar 

  • Caetano MAL, Gherardi DFM, Yoneyama T (2008) Optimal resource management control for CO2 emission and reduction of the greenhouse effect. Ecol Model 213:119–126

    Article  Google Scholar 

  • Chen W-Y, Shi G, Hailey AK et al (2012) Photocatalytic conversion of carbon dioxide to organic compounds using a green photocatalyst: an undergraduate research experiment. Chem Educ 17:166–171

    Google Scholar 

  • Choi WY, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized TiO2 – correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  • Colombo DP, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449

    Article  Google Scholar 

  • Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57:39–44

    Article  Google Scholar 

  • de Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sustain Energy Rev 19:82–106

    Article  Google Scholar 

  • Dhakshinamoorthy A, Navalon S, Corma A et al (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233

    Article  Google Scholar 

  • Dhanasekaran T, Grodkowski J, Neta P et al (1999) p-terphenyl-sensitized photoreduction of CO2 with cobalt and iron porphyrins. Interaction between CO and reduced metalloporphyrins. J Phys Chem 103:7742–7748

    Article  Google Scholar 

  • Domen K, Kondo JN, Hara M et al (2000) Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 73:1307–1331

    Article  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264

    Article  Google Scholar 

  • Ettedgui J, Diskin-Posner Y, Weiner L et al (2011) Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. J Am Chem Soc 133:188–190

    Article  Google Scholar 

  • Fang J, Wang F, Qian K et al (2008) Bifunctional N-doped mesoporous TiO2 photocatalysts. J Phys Chem C 112:18150–18156

    Article  Google Scholar 

  • Fischer H, Wahlen M, Smith J et al (1999) Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283:1712–1714

    Article  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  Google Scholar 

  • Fujishima A, Honda KB (1971) Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull Chem Soc Jpn 44:1148–1150

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  • Gai YQ, Li JB, Li SS et al (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402

    Article  Google Scholar 

  • Gholamkhass B, Mametsuka H, Koike K et al (2005) Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium − rhenium Bi- and tetranuclear complexes. Inorg Chem 44:2326–2336

    Article  Google Scholar 

  • Gilfillan SMV, Lollar BS, Holland G et al (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618

    Article  Google Scholar 

  • Graciani J, Nambu A, Evans J et al (2008) Au – N synergy and N-doping of metal oxide-based photocatalysts. J Am Chem Soc 130:12056–12063

    Article  Google Scholar 

  • Grodkowski J, Behar D, Neta P et al (1997) Iron porphyrin-catalyzed reduction of CO2. Photochemical and radiation chemical studies. J Phys Chem A 101:248–254

    Article  Google Scholar 

  • Ha E-G, Chang J-A, Byun S-M et al (2014) High-turnover visible-light photoreduction of CO2 by a Re(I) complex stabilized on dye-sensitized TiO2. Chem Commun 50:4462–4464

    Article  Google Scholar 

  • Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408

    Article  Google Scholar 

  • Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci U S A 101:16109–16114

    Article  Google Scholar 

  • Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)3 2+-Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 536–538

    Google Scholar 

  • Hernández-Alonso MD, Fresno F, Suárez S et al (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  • Hidalgo MC, Maicu M, Navio JA et al (2009) Effect of sulfate pretreatment on gold-modified TiO2 for photocatalytic applications. J Phys Chem C 113:12840–12847

    Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hong YC, Bang CU, Shin DH et al (2005) Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chem Phys Lett 413:454–457

    Article  Google Scholar 

  • Hurum DC, Gray KA, Rajh T et al (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980

    Article  Google Scholar 

  • Inoue T, Fujishima A, Konishi S et al (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  Google Scholar 

  • Ishida H, Terada T, Tanaka K et al (1990) Photochemical CO2 reduction catalyzed by Ru(bpy)2(CO)2 2+ using triethanolamine and 1-benzyl-1,4-dihydronicotinamide as an electron donor. Inorg Chem 29:905–911

    Article  Google Scholar 

  • Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Article  Google Scholar 

  • Jackson RB, Schlesinger WH (2004) Curbing the US carbon deficit. Proc Natl Acad Sci U S A 101:15827–15829

    Article  Google Scholar 

  • Jagadale TC, Takale SP, Sonawane RS et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112:14595–14602

    Article  Google Scholar 

  • Janáky C, Rajeshwar K, de Tacconi NR et al (2013) Tungsten-based oxide semiconductors for solar hydrogen generation. Catal Today 199:53–64

    Article  Google Scholar 

  • Kaneco S, Shimizu Y, Ohta K et al (1998) Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J Photochem Photobiol A 115:223–226

    Article  Google Scholar 

  • Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    Article  Google Scholar 

  • Kesselman JM, Weres O, Lewis NS et al (1997) Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct Hole oxidation pathways. J Phys Chem B 101:2637–2643

    Article  Google Scholar 

  • Kočí K, Obalová L, Lacný Z (2008) Photocatalytic reduction of CO2 over TiO2 based catalysts. Chem Pap 62:1–9

    Article  Google Scholar 

  • Kondratenko EV, Mul G, Baltrusaitis J et al (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6:3112–3135

    Article  Google Scholar 

  • Kou Y, Nakatani S, Sunagawa G et al (2014) Visible light-induced reduction of carbon dioxide sensitized by a porphyrin – rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system. J Catal 310:57–66

    Article  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  • Kudo A, Kato H, Tsuji I (2004) Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem Lett 33:1534–1539

    Article  Google Scholar 

  • Kumar B, Smieja JM, Sasayama AF et al (2012) Tunable, light-assisted co-generation of CO and H2 from CO2 and H2O by Re(bipy-tbu)(CO)3Cl and p-Si in non-aqueous medium. Chem Commun 48:272–274

    Article  Google Scholar 

  • Lehn J-M, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701–704

    Article  Google Scholar 

  • Li GH, Dimitrijevic NM, Chen L et al (2008) Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J Phys Chem C 112:19040–19044

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  • Liu G, Hoivik N, Wang K et al (2012) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68

    Article  Google Scholar 

  • Livraghi S, Chierotti MR, Giamello E et al (2008) Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: a multi-technique characterization of differently prepared materials. J Phys Chem C 112:17244–17252

    Article  Google Scholar 

  • Luthi D, Le Floch M, Bereiter B et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Article  Google Scholar 

  • Matsuoka S, Kohzuki T, Pac C et al (1992) Photocatalysis of ollgo(p-phenylenes). Photochemical reduction of carbon dloxlde with trlethylamlne. J Phys Chem 96:4437–4442

    Article  Google Scholar 

  • Matsuoka S, Yamamoto K, Ogata T et al (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of CO2. J Am Chem Soc 115:601–609

    Article  Google Scholar 

  • McMichael A, Woodruff R (2004) Climate change and risk to health. Br Med J 329:1416–1417

    Article  Google Scholar 

  • Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  Google Scholar 

  • Mohapatra SK, Raja KS, Mahajan VK et al (2008) Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives. J Phys Chem C 112:11007–11012

    Article  Google Scholar 

  • Moriarty P, Honnery D (2009) Hydrogen’s role in an uncertain energy future. Int J Hydrog Energy 34:31–39

    Article  Google Scholar 

  • Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  Google Scholar 

  • Navalón S, Dhakshinamoorthy A, Álvaro M et al (2013) Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 6:562–577

    Article  Google Scholar 

  • Navarro RM, Sanchez-Sanchez MC, Alvarez-Galvan MC et al (2009) Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ Sci 2:35–54

    Article  Google Scholar 

  • Ogata T, Yanagida S, Brunschwig BS et al (1995a) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716

    Article  Google Scholar 

  • Ogata T, Yamamoto Y, Wadaj Y et al (1995b) Phenazine-photosensitized reduction of CO2 mediated by a cobalt-cyclam complex through electron and hydrogen transfer. J Phys Chem 99:11916–11922

    Article  Google Scholar 

  • Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  Google Scholar 

  • Portenkirchner E, Oppelt K, Ulbricht C et al (2012) Electrocatalytic and photocatalytic reduction of carbon dioxide to carbon monoxide using the alkynyl-substituted rhenium(I) complex (5,5′-bisphenylethynyl-2,2′-bipyridyl)Re(CO)3Cl. J Organomet Chem 716:19–25

    Article  Google Scholar 

  • Reithmeier R, Bruckmeier C, Rieger B (2012) Conversion of CO2 via visible light promoted homogeneous redox catalysis. Catalysts 2:544–571

    Article  Google Scholar 

  • Roy SC, Varghese OK, Paulose M et al (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  Google Scholar 

  • Sato S, Morikawa T, Kajino T et al (2013) A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew Chem Int Ed 52:988–992

    Article  Google Scholar 

  • Savéant J-M (2008) Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem Rev 108:2348–2378

    Article  Google Scholar 

  • Schimel D, Melillo J, Tian HQ et al (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    Article  Google Scholar 

  • Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  Google Scholar 

  • Schneider J, Vuong KQ, Calladine JA et al (2011) Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO. Inorg Chem 50:11877–11889

    Article  Google Scholar 

  • Schneider J, Jia H, Muckerman JT et al (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051

    Article  Google Scholar 

  • Sekizawa K, Maeda K, Domen K et al (2013) Artificial Z – scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  Google Scholar 

  • Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214

    Article  Google Scholar 

  • Takeda H, Koike K, Inoue H et al (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(l) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031

    Article  Google Scholar 

  • Takeda H, Koizumi H, Okamoto K et al (2014) Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem Commun 50:1491–1493

    Article  Google Scholar 

  • Tamaki Y, Morimoto T, Koike K et al (2012a) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci U S A 109:15673–15678

    Article  Google Scholar 

  • Tamaki Y, Watanabe K, Koike K et al (2012b) Development of highly efficient supramolecular CO2 reduction photocatalysts with high turnover frequency and durability. Faraday Discuss 155:115–127

    Article  Google Scholar 

  • Tamaki Y, Koike K, Morimoto T et al (2013a) Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor. J Catal 304:22–28

    Article  Google Scholar 

  • Tamaki Y, Koike K, Morimoto T et al (2013b) Red-light-driven photocatalytic reduction of CO2 using Os(II)-Re(I) supramolecular complexes. Inorg Chem 52:11902–11909

    Article  Google Scholar 

  • Thoi VS, Kornienko N, Margarit CG et al (2013) Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N – heterocyclic carbene − isoquinoline complex. J Am Chem Soc 135:14413–14424

    Article  Google Scholar 

  • Tseng IH, Chang W-C, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48

    Article  Google Scholar 

  • Usubharatana P, McMartin D, Veawab A et al (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568

    Article  Google Scholar 

  • U.S. Energy Information Administration, International Energy Outlook 2009 Document #DOE/EIA-0484 (2009)

    Google Scholar 

  • Vaneski A, Schneider J, Susha AS et al (2014) Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J Photochem Photobiol C 19:52–61

    Article  Google Scholar 

  • Varghese OK, Paulose M, LaTempa TJ et al (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  Google Scholar 

  • Wang YQ, Cheng HM, Zhang L et al (2000) The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. J Mol Catal A Chem 151:205–216

    Article  Google Scholar 

  • Wang C, Xie Z, DeKrafft KE et al (2011) Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  Google Scholar 

  • Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuel 10:305–325

    Article  Google Scholar 

  • Xie G, Zhang K, Guo B et al (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25:3820–3839

    Article  Google Scholar 

  • Yan XL, He J, Evans DG et al (2005) Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Appl Catal B Environ 55:243–252

    Article  Google Scholar 

  • Yanagida S, Ogata T, Yamamoto Y et al (1995) A novel CO2 photoreduction system consisting of phenazine as a photosensitizer and cobalt cyclam as a CO2 scavenger. Energy Convers Manag 36:601–604

    Article  Google Scholar 

  • Yang YH, Chen QY, Yin ZL et al (2005) Progress in research of photocatalytic water splitting. Prog Chem 17:631–642

    Google Scholar 

  • Yeredla RR, Xu HF (2008) Incorporating strong polarity minerals of tourmaline with semiconductor titania to improve the photosplitting of water. J Phys Chem C 112:532–539

    Article  Google Scholar 

  • Younpblood WJ, Lee SHA, Kobayashi Y et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  Google Scholar 

  • Yuan Y-J, Yu Z-T, Chen X-Y et al (2011) Visible-light-driven H2 generation from water and CO2 conversion by using a zwitterionic cyclometalated iridium(III) complex. Chem Eur J 17:12891–12895

    Article  Google Scholar 

  • Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690

    Article  Google Scholar 

  • Zhang PD, Jia G, Wang G (2007) Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renew Sustain Energy Rev 11:1903–1912

    Article  Google Scholar 

  • Zong X, Wang L (2014) Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. J Photochem Photobiol C 18:32–49

    Article  Google Scholar 

  • Zuttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan I. Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York (outside the USA)

About this entry

Cite this entry

Hammer, N.I., Sutton, S., Delcamp, J., Graham, J.D. (2017). Photocatalytic Water Splitting and Carbon Dioxide Reduction. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-14409-2_46

Download citation

Publish with us

Policies and ethics