Skip to main content

Electrospun Fluorescent Nanofibers for Explosive Detection

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Development of an instant on-site visual detection method for 2,4,6 trinitrotoluene (TNT) has become a significant requirement of the hour towards a secured society and a greener environment. Despite momentous advances in the respective field, a portable and reliable method for quick and selective detection of TNT still poses a challenge to many reasons attributing to inappropriate usage in subordinate areas and untrained personnel. The recent effort on the fluorescent based detection represents as one of easy method in terms of fast response time and simple on/off detection. Therefore, this chapter provides a consolidation of information relating to recent advances in fluorescence based TNT detection. Further, the main focus will be towards advances in the nanofibers based TNT detection and their reason to improving the sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Freeman, T. Finder, L. Bahshi, R. Gill, I. Willner, Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives. Adv. Mater. 24, 6416–6421 (2012)

    Article  Google Scholar 

  2. Z.C. Symons, N.C. Bruce, Bacterial pathways for degradation of nitroaromatics. Nat. Prod. Rep. 23, 845–850 (2006)

    Article  Google Scholar 

  3. M. Kulkarni, A. Chaudhari, Microbial remediation of nitro-aromatic compounds: an overview. J. Environ. Manag. 85, 496–512 (2007)

    Article  Google Scholar 

  4. M.E. Honeycutt, A.S. Jarvis, V.A. McFarland, Cytotoxicity and mutagenicity of 2,4,6-TNT and its metabolites. Ecotoxicol. Environ. Saf. 35(3), 282–287 (1996)

    Article  Google Scholar 

  5. R. Martel, M. Mailloux, U. Gabriel et al., Behavior of energetic materials in ground water at an anti-tank range. J. Environ. Qual. 38, 75–92 (2009)

    Article  Google Scholar 

  6. J.D. Rodgers, N.J. Bunce, Treatment methods for the remediation of nitroaromatic explosives. Wat. Res. 35(9), 2101–2111 (2001)

    Article  Google Scholar 

  7. K. Ayoub, E.D. van Hullebusch, M. Cassir et al., Application of advanced oxidation processes for TNT removal: a review. J. Hazard. Mater. 178, 10–28 (2010)

    Article  Google Scholar 

  8. S.J. Toal, W.C. Trogler, Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16, 2871–2883 (2006)

    Article  Google Scholar 

  9. M.B. Pushkarsky, I.G. Dunayevskiy, M. Prasanna et al., High-sensitivity detection of TNT. PNAS 103(52), 19630–19634 (2006)

    Article  Google Scholar 

  10. L.A. Pinnaduwage, A. Gehl, D.L. Hedden et al., A microsensor for trinitrotoluene vapour. Nature 425, 474 (2003)

    Article  Google Scholar 

  11. M. Riskin, R. Tel-Vered, O. Lioubashevski et al., Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J. Am. Chem. Soc. 131, 7368–7378 (2009)

    Article  Google Scholar 

  12. S. Kumar, N. Venkatramaiah, S. Patil, Fluoranthene based derivatives for detection of trace explosive nitroaromatics. J. Phys. Chem. C 117, 7236–7245 (2013)

    Article  Google Scholar 

  13. R. Tu, B. Liu, Z. Wang et al., Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal. Chem. 80, 3458–3465 (2008)

    Article  Google Scholar 

  14. S.W.I.I.I. Thomas, G.D. Joly, T.M. Swager, Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4), 1339–1386 (2007)

    Article  Google Scholar 

  15. G.H. Shi, Z.B. Shang, Y. Wang et al., Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds. Spectrochim. Acta Mol. Biomol. Spectrosc. 70(2), 247–252 (2008)

    Article  Google Scholar 

  16. J.S. Yang, T.M. Swager, Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J. Am. Chem. Soc. 120, 11864–11873 (1998)

    Article  Google Scholar 

  17. D. Gao, Z. Wang, B. Liu et al., Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Anal. Chem. 80, 8545–8553 (2008)

    Article  Google Scholar 

  18. Y. Engel, R. Elnathan, A. Pevzner et al., Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 49, 6830–6835 (2010)

    Article  Google Scholar 

  19. G.B. Demirel, B. Daglara, M. Bayindir, Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chem. Commun. 49, 6140–6142 (2013)

    Article  Google Scholar 

  20. Y. Chen, Z. Chen, Y. He et al., L-Cysteine-capped CdTe QS-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology 21, 125502 (2010)

    Article  Google Scholar 

  21. Y. Jiang, H. Zhao, N. Zhu et al., A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Ed. 47, 8601–8604 (2008)

    Article  Google Scholar 

  22. E.R. Goldman, I.L. Medintz, J.L. Whitley et al., A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc. 127, 6744–6751 (2005)

    Article  Google Scholar 

  23. M. Alcaniz, J.L. Vivancos, R. Masot et al., Design of an electronic system and its application to electronic tongues using variable amplitude pulse voltammetry and impedance spectroscopy. J. Food Eng. 111, 122–128 (2012)

    Article  Google Scholar 

  24. (a) Yunsheng Xia, Lei Song, and Changqing Zhu, Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)−(quantum dots) Assembly. Anal. Chem. 83(4), 1401–1407 (2011); (b) K. Zhang, H. Zhou, Q. Mei et al., Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 133(22), 8424–8427 (2011)

    Google Scholar 

  25. S.S.R. Dasary, A.K. Singh, D. Senapati et al., Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 131, 13806–13812 (2009)

    Article  Google Scholar 

  26. Q. Fang, J. Geng, B. Liu et al., Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer. Chem. Eur. J. 15, 11507–11514 (2009)

    Article  Google Scholar 

  27. H. Sohn, R.M. Calhoun, M.J. Sailor et al., Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles. Angew. Chem. 40(11), 2104–2105 (2001)

    Article  Google Scholar 

  28. P.C. Chen, S. Sukcharoenchoke, K. Ryu et al., 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900–1904 (2010)

    Article  Google Scholar 

  29. A.D. Aguilar, E.S. Forzani, M. Leright et al., A hybrid nanosensor for TNT vapor detection. Nano Lett. 10, 380–384 (2010)

    Article  Google Scholar 

  30. A. Rose, Z. Zhu, C.F. Madigan et al., Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005)

    Article  Google Scholar 

  31. A. Lan, K. Li, H. Wu et al., A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009)

    Article  Google Scholar 

  32. K. Cizek, C. Prior, C. Thammakhet et al., Integrated explosive preconcentrator and electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. Anal. Chim. Acta. 661, 117–121 (2010)

    Article  Google Scholar 

  33. C.X. Guo, Z.S. Lu, Y. Lei et al., Ionic liquid–graphene composite for ultratrace explosive trinitrotoluene detection. Electrochem. Commun. 12, 1237–1240 (2010)

    Article  Google Scholar 

  34. H.X. Zhang, A.M. Cao, J.S. Hu et al., Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal. Chem. 78, 1967–1971 (2006)

    Article  Google Scholar 

  35. M. Riskin, R. Tel-Vered, T. Bourenko et al., Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions. J. Am. Chem. Soc. 130, 9726–9733 (2008)

    Article  Google Scholar 

  36. S. Hrapovic, E. Majid, Y. Liu et al., Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem. 78, 5504–5512 (2006)

    Article  Google Scholar 

  37. K.K. Kartha, S.S. Babu, S. Srinivasan et al., Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. J. Am. Chem. Soc. 134, 4834–4841 (2012)

    Article  Google Scholar 

  38. C.M. Gonzalez, M. Iqbal, M. Dasog et al., Detection of high-energy compounds using photoluminescent silicon nanocrystal paper based sensors. Nanoscale 6, 2608–2612 (2014)

    Article  Google Scholar 

  39. J.P. Vigneron, J.M. Pasteels, D.M. Windsor et al., Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 76, 031907 (2007)

    Article  Google Scholar 

  40. R.E. Young, F.M. Mencher, Bioluminescence in mesopelagic squid: diel color change during counterillumination. Science 208, 1286–1288 (1980)

    Article  Google Scholar 

  41. K.S. Bejoymohandas, T.M. George, S. Bhattacharya et al., AIPE-active green phosphorescent iridium(III) complex impregnated test strips for the vapor-phase detection of 2,4,6-trinitrotoluene (TNT). J. Mater. Chem. C 2, 515–523 (2014)

    Article  Google Scholar 

  42. J.W. Oh, W.J. Chung, K. Heo et al., Biomimetic virus-based colourimetric sensors. Nat. Commun. (2014). doi:10.1038/ncomms4043

    Google Scholar 

  43. H. Sohn, M.J. Sailor, D. Magde et al., Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J. Am. Chem. Soc. 125, 3821–3830 (2003)

    Article  Google Scholar 

  44. S. Anitha, B. Brabu, T.D. John et al., Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym. 87, 1065–1072 (2012)

    Article  Google Scholar 

  45. S. Anitha, T.S. Natarajan, Fabrication of hierarchical ZnO enriched fibrous PVA membrane. J. Nanosci. Nanotechnol. 12, 1–9 (2012)

    Article  Google Scholar 

  46. S. Anitha, B. Brabu, T.D. John et al., Preparation of free-standing electrospun composite ZnO membrane for antibacterial applications. Adv. Sci. Lett. 4, 1–7 (2012)

    Google Scholar 

  47. T. Uyar, J. Hacaloglu, F. Besenbacher, Electrospun polyethylene oxide (PEO) nanofibers containing cyclodextrin inclusion complex. J. Nanosci. Nanotechnol. 11(5), 3949–3958 (2011)

    Article  Google Scholar 

  48. T. Uyar, R. Havelund, J. Hacaloglu et al., Functional electrospun polystyrene nanofibers incorporating alpha, beta and gamma cyclodextrins: comparison of molecular filter performance. ACS Nano 4(9), 5121–5130 (2010)

    Article  Google Scholar 

  49. F. Kayaci, T. Uyar, Electrospun zein nanofibers incorporating cyclodextrins. Carbohydr. Polym. 90, 558–568 (2012)

    Article  Google Scholar 

  50. A. Celebioglu, T. Uyar, Green and one-step synthesis of gold nanoparticles incorporated in electrospun cyclodextrin nanofibers. RSC Adv. 3, 10197–10201 (2013)

    Article  Google Scholar 

  51. A. Celebioglu, O.C.O. Umu, T. Tekinay et al., Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids Surf. B 116, 612–619 (2014)

    Article  Google Scholar 

  52. Y. Che, D.E. Gross, H. Huang et al., Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. J. Am. Chem. Soc. 134, 4978–4982 (2012)

    Article  Google Scholar 

  53. F. Wang, W. Wang, B. Liu et al., Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultra trace trinitrotoluene. Talanta 79, 376–382 (2009)

    Article  Google Scholar 

  54. Y. Wang, A. La, Y. Ding et al., Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors. Adv. Funct. Mater. 22, 3547–355 (2012)

    Article  Google Scholar 

  55. J.H. Lee, S. Kang, J.Y. Lee et al., Instant visual detection of picogram levels of trinitrotoluene by using luminescent metal–organic framework gel-coated filter paper. Chem. Eur. J. 19, 16665–16671 (2013)

    Article  Google Scholar 

  56. H. Xu, F. Liu, Y. Cui et al., A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem. Commun. 47, 3153–3155 (2011)

    Article  Google Scholar 

  57. Y. Xu, Y. Wen, W. Zhu et al., Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Mater. Lett. 87, 20–23 (2012)

    Article  Google Scholar 

  58. Y. Yang, H. Wang, K. Su et al., A facile and sensitive fluorescent sensor using electrospun nanofibrous film for nitroaromatic explosive detection. J. Mater. Chem. 21, 11895 (2011)

    Article  Google Scholar 

  59. Y.Y. Lv, W. Xu, F.W. Lin et al., Electrospun nanofibers of porphyrinated polyimide for the ultra-sensitive detection of trace TNT. Sensor Actuators B Chem. 184, 205–211 (2013)

    Article  Google Scholar 

  60. Y. Long, H. Chen, Y. Yang et al., Electrospun nanofibrous film doped with a conjugated polymer for DNT fluorescence sensor. Macromolecules 42, 6501–6509 (2009)

    Article  Google Scholar 

  61. Y.Z. Liao, V. Strong, Y. Wang et al., Oligotriphenylene nanofiber sensors for detection of nitro-based explosives. Adv. Funct. Mater. 22, 726–735 (2012)

    Article  Google Scholar 

  62. S. Tao, G. Li, J. Yin, Fluorescent nanofibrous membranes for trace detection of TNT vapor. J. Mater. Chem. 17, 2730–2736 (2007)

    Article  Google Scholar 

  63. S. Anitha, C. Asli, U. Tamer, Ultrafast on-site selective visual detection of TNT at sub ppt level using fluorescent gold cluster incorporated single nanofiber. Chem. Commun. (2014). doi:10.1039/C4CC01190B

    Google Scholar 

  64. W. Li, N.D. Ho, Y. Cho et al., Nanofibers of conducting polyaniline for aromatic organic compound sensor. Sensor Actuators B-Chem. 143, 132–138 (2009)

    Article  Google Scholar 

  65. C. Deng, P. Gong, Q. He et al., Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT. Chem. Phys. Lett. 483, 219–223 (2009)

    Article  Google Scholar 

  66. W.E. Lee, C.J. Oh, I.K. Kang et al., Diphenylacetylene polymer nanofiber mats fabricated by freeze drying: preparation and application for explosive sensors. Macromol. Chem. Phys. 211, 1900–1908 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Anitha Senthamizhan thanks the Scientific & Technological Research Council of Turkey (TUBITAK) (TUBITAK-BIDEB 2216, Research Fellowship Programme for Foreign Citizens) for postdoctoral fellowship. Tamer Uyar acknowledges partial support of EU FP7- Marie Curie-IRG for funding NANOWEB (PIRG06-GA-2009-256428) and The Turkish Academy of Sciences – Outstanding Young Scientists Award Program (TUBA-GEBIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Uyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senthamizhan, A., Uyar, T. (2015). Electrospun Fluorescent Nanofibers for Explosive Detection. In: Macagnano, A., Zampetti, E., Kny, E. (eds) Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-14406-1_8

Download citation

Publish with us

Policies and ethics