Priorities, Promoters and Inhibitors in Deterministic Non-cooperative P Systems

  • Artiom Alhazov
  • Rudolf Freund
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8961)


Membrane systems (with symbol objects) are distributed controlled multiset processing systems. Non-cooperative P systems with either promoters or inhibitors (of weight not restricted to one) are known to be computationally complete. Since recently, it is known that the power of the deterministic subclass of such systems is subregular. We present new results on the weight (one and two) of promoters and inhibitors, as well as characterizing the systems with priorities only.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R.: Asynchronous and Maximally Parallel Deterministic Controlled Non-cooperative P Systems Characterize NFIN and coNFIN. In: Martínez-del-Amor, M.Á., Păun, Gh., Pérez-Hurtado, I., Romero-Campero, F.J. (eds.) The Tenth Brainstorming Week in Membrane Computing, vol. 1, pp. 25–34. Fénix Editora, Sevilla (2012), and in: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp. 101–111. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Alhazov, A., Sburlan, D.: Ultimately Confluent Rewriting Systems. Parallel Multiset–Rewriting with Permitting or Forbidding Contexts. In: Mauri, G., Păun, Gh., Pérez-Jímenez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 178–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally Universal P Systems without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science 330(2), 251–266 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Freund, R., Kogler, M., Oswald, M.: A General Framework for Regulated Rewriting Based on the Applicability of Rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Freund, R., Verlan, S.: A Formal Framework for Static (Tissue) P Systems. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ibarra, O.H., Yen, H.-C.: Deterministic Catalytic Systems are Not Universal. Theoretical Computer Science 363, 149–161 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Minsky, M.L.: Finite and Infinite Machines. Prentice Hall, New Jersey (1967)zbMATHGoogle Scholar
  8. 8.
    Păun, Gh.: Membrane Computing: An Introduction. Springer (2002)Google Scholar
  9. 9.
    Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  10. 10.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 vol. Springer (1997)Google Scholar
  11. 11.
    P systems webpage:

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations