Defects on Bulk MgO(001) Imaged by nc-AFM

  • Clemens Barth
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 58)


In this chapter, noncontact AFM (nc-AFM) work concerning defects on the native MgO(001) surface is reviewed. Due to their relevance Electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) are first introduced. Experimental spectroscopy curves and images are then discussed and compared with results from theory, with the focus on atomic resolution and defect identification.


Atomic Resolution Contact Potential Difference Kelvin Probe Force Microscopy Electrostatic Force Microscopy Frequency Modulation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author expresses his very great appreciation to A. L. Shluger, C. R. Henry, A. S. Foster, G. Thornton, O. Pakarinen, M. Watkins, T. Trevethan, K. McKenna, C. Pang, C. Noguera, J. Goniakowski, J. Jupille, G. Pacchioni, U. Heiz, M. Bieletzki, J. Niebauer, A. Ouvrard, B. Bourguignon, Ch. Mottet and M. Reichling for stimulating discussions about MgO in the last years. The author acknowledges the European Science Foundation for financial support through the FANAS project NOMCIS and the French agency for Research (Agence Nationale pour la Recherche, ANR) for financial support through the programs CANA and MISS. Support by the European COST through action D41 and CM1104 is highly acknowledged.


  1. 1.
    T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)ADSGoogle Scholar
  2. 2.
    S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy (Springer, Berlin Heidelberg, 2002)Google Scholar
  3. 3.
    S. Morita, F. Giessibl, R. Wiesendanger, Noncontact Atomic Force Microscopy (Springer, Berlin Heidelberg, 2009)Google Scholar
  4. 4.
    J.V. Lauritsen, M. Reichling, Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J. Phys.: Condens. Matter 22, 263001 (2010)ADSGoogle Scholar
  5. 5.
    C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger, Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477–501 (2011)Google Scholar
  6. 6.
    W.A. Hofer, A.S. Foster, A.L. Shluger, Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 75, 1287–1331 (2003)ADSGoogle Scholar
  7. 7.
    C. Barth, C.R. Henry, Imaging suzuki precipitates on NaCl:Mg2(001) by scanning force microscopy. Phys. Rev. Lett. 100, 096101 (2008)ADSGoogle Scholar
  8. 8.
    C. Barth, C.R. Henry, NaCl(001) surfaces nanostructured by suzuki precipitates: a scanning force microscopy study. New J. Phys. 11, 043003 (2009)ADSGoogle Scholar
  9. 9.
    K. Lämmle, T. Trevethan, A. Schwarz, M.A. Watkins, A. Shluger, R. Wiesendanger, Unambiguous determination of the adsorption geometry of a metal-organic complex on a bulk insulator. Nano Lett. 10, 2965 (2010)ADSGoogle Scholar
  10. 10.
    I.G. Hill, A. Rajagopal, A. Kahn, Y. Hu, Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 73, 662–664 (1998)ADSGoogle Scholar
  11. 11.
    S. Prada, U. Martinez, G. Pacchioni, Work function changes induced by deposition of ultrathin dielectric films on metals: a theoretical analysis. Phys. Rev. B 78, 235423 (2008)ADSGoogle Scholar
  12. 12.
    P. Girard, Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485–490 (2001)ADSGoogle Scholar
  13. 13.
    R. Berger, H.J. Butt, M.B. Retschke, S.A.L. Weber, Electrical modes in scanning probe microscopy. Macromol. Rapid Commun. 30, 1167–1178 (2009)Google Scholar
  14. 14.
    V. Palermo, M. Palma, P. Samori, Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145–164 (2006)Google Scholar
  15. 15.
    W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)ADSGoogle Scholar
  16. 16.
    B.D. Terris, J.E. Stern, D. Rugar, H.J. Mamin, Contact electrification using force microscopy. Phys. Rev. Lett. 63, 2669–2672 (1989)ADSGoogle Scholar
  17. 17.
    J.M.R. Weaver, D.W. Abraham, High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B 9, 1559 (1991)Google Scholar
  18. 18.
    M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991)ADSGoogle Scholar
  19. 19.
    S. Kitamura, M. Iwatsuki, High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl. Phys. Lett. 72, 3154–3156 (1998)ADSGoogle Scholar
  20. 20.
    C. Barth, C.R. Henry, Kelvin probe force microscopy on surfaces of UHV cleaved ionic crystals. Nanotechnology 17, S155 (2006)ADSGoogle Scholar
  21. 21.
    A. Kikukawa, S. Hosaka, R. Imura, Vacuum compatible high-sensitive Kelvin probe force microscopy. Rev. Sci. Instr. 67, 1463–1467 (1996)ADSGoogle Scholar
  22. 22.
    U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L.M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005)ADSGoogle Scholar
  23. 23.
    G. Cabailh, C.R. Henry, C. Barth, Thin NaCl films on silver (001): island growth and work function. New J. Phys. 14, 103037 (2012)ADSGoogle Scholar
  24. 24.
    C.L. Pang, T.V. Ashworth, H. Raza, S.A. Haycock, G. Thornton, A non-contact atomic force microscopy and ‘force spectroscopy’ study of charging on oxide surfaces. Nanotechnology 15, 862 (2004)ADSGoogle Scholar
  25. 25.
    T. Hynninen, A.S. Foster, C. Barth, Polarized tips or surfaces: consequences in Kelvin probe force microscopy. e-J. Surf. Sci. Nanotech. 9, 6–14 (2011)Google Scholar
  26. 26.
    C. Loppacher, U. Zerweck, L.M. Eng, Kelvin probe force microscopy of alkali chloride thin films on Au(111). Nanotechnology 15, 9 (2004)ADSGoogle Scholar
  27. 27.
    M. Bieletzki, T. Hynninen, T.M. Soini, M. Pivetta, C.R. Henry, A.S. Foster, F. Esch, C. Barth, U. Heiz, Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. Phys. Chem. Chem. Phys. 12, 3203–3209 (2010)Google Scholar
  28. 28.
    G. Butti, M.I. Trioni, H. Ishida, Electronic properties calculation of MgO thin films adsorbed on semi-infinite Ag(001). Phys. Rev. B 70, 195425 (2004)ADSGoogle Scholar
  29. 29.
    L. Giordano, F. Cinquini, G. Pacchioni, Tuning the surface metal work function by deposition of ultrathin oxide films: density functional calculations. Phys. Rev. B 73, 045414 (2005)ADSGoogle Scholar
  30. 30.
    G.N. Luo, K. Yamaguchi, T. Terai, M. Yamawaki, Charging effect on work function measurements of lithium ceramics under irradiation. J. Alloys Compd. 349, 211–216 (2003)Google Scholar
  31. 31.
    S. Ogawa, S. Ichikawa, Observation of induced dipoles between small palladium clusters and α-(0001) Al2O3. Phys. Rev. B 51, 17231–17234 (1995)ADSGoogle Scholar
  32. 32.
    L.B. Harris, J. Fiasson, Direct determination of surface potential on sodium chloride single crystals: I. Analysis of measurements. J. Phys. Chem.: Sol. State Phys. 18, 4845–4862 (1985)ADSGoogle Scholar
  33. 33.
    S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)ADSGoogle Scholar
  34. 34.
    S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)ADSGoogle Scholar
  35. 35.
    L. Yan, C.M. Lopez, R.P. Shrestha, E.A. Irene, A.A. Suvorova, M. Saunders, Magnesium oxide as a candidate high-k gate dielectric. Appl. Phys. Lett. 88, 142901 (2006)ADSGoogle Scholar
  36. 36.
    F. Freund, Charge generation and propagation in igneous rocks. J. Geodyn. 33, 543–570 (2002)Google Scholar
  37. 37.
    F. Freund, On the electrical conductivity structure of the stable continental crust. J. Geodyn. 35, 353–388 (2003)Google Scholar
  38. 38.
    J. Goniakowski, F. Finocchi, C. Noguera, Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008)ADSGoogle Scholar
  39. 39.
    C. Noguera, J. Goniakowski, Polarity in oxide nano-objects. Chem. Rev. 113, 4073–4105 (2013)Google Scholar
  40. 40.
    C.R. Henry, Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231 (1998)ADSGoogle Scholar
  41. 41.
    U. Heiz, U. Landman, Nanocatalysis (Springer, Berlin, 2007)Google Scholar
  42. 42.
    H.J. Freund, G. Pacchioni, Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem. Soc. Rev. 37, 2224–2242 (2008)Google Scholar
  43. 43.
    H.-J. Freund, Model studies in heterogeneous catalysis. Chem. A Eur. J. 16, 9384–9397 (2010)MathSciNetGoogle Scholar
  44. 44.
    G. Pacchioni, in Theory of Point Defects At the MgO Surface, ed. by D.P. Woodruff. The Chemical Physics of Solid Surfaces (Elsevier, Amsterdam, 2002)Google Scholar
  45. 45.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005)ADSGoogle Scholar
  46. 46.
    K. McKenna, T. Trevethan, A.L. Shluger, Interplay between adsorbate diffusion and electron tunneling at an insulating surface. Phys. Rev. B 82, 85427 (2010)ADSGoogle Scholar
  47. 47.
    C. Harding, V. Habibpour, S. Kunz, A.N.S. Farnbacher, U. Heiz, B. Yoon, U. Landman, Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. J. Am. Chem. Soc. 131, 538–548 (2009)Google Scholar
  48. 48.
    X. Lin, B. Yang, H.M. Benia, P. Myrach, M. Yulikov, A. Aumer, M.A. Brown, M. Sterrer, O. Bondarchuk, E. Kieseritzky, J. Rocker, T. Risse, H.-J. Gao, N. Nilius, H.-J. Freund, Charge-mediated adsorption behavior of CO on MgO-supported Au clusters. J. Am. Chem. Soc. 132, 7745–7749 (2010)Google Scholar
  49. 49.
    J.L. Robins, T.N. Rhodin, R.L. Gerlach, Dislocation structures in cleaved magnesium oxide. J. Appl. Phys. 37, 3893–3903 (1966)ADSGoogle Scholar
  50. 50.
    C. Duriez, C. Chapon, C.R. Henry, J.M. Rickard, Structural characterization of MgO(100) surfaces. Surf. Sci. 230, 123–136 (1990)ADSGoogle Scholar
  51. 51.
    C. Barth, C.R. Henry, Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys. Rev. Lett. 91, 196102 (2003)ADSGoogle Scholar
  52. 52.
    E. Meyer, Atomic force microscopy. Prog. Surf. Sci. 41, 3–49 (1992)ADSGoogle Scholar
  53. 53.
    H. Ota, K. Sakai, R. Aoki, N. Ikemiya, S. Hara, Superstructure observation on a MgO(100) surface. Surf. Sci. 357–358, 150–154 (1996)Google Scholar
  54. 54.
    D. Abriou, F. Creuzet, J. Jupille, Characterization of cleaved MgO(100) surfaces. Surf. Sci. 352, 499–503 (1996)ADSGoogle Scholar
  55. 55.
    S.S. Perry, P.B. Merrill, Preparation and characterization of MgO(100) surfaces. Surf. Sci. 383, 268–276 (1997)ADSGoogle Scholar
  56. 56.
    K. Sangwal, F. Sanz, J. Servat, P. Gorostiza, Nature of multilayer steps on the 100 cleavage planes of MgO single crystals. Surf. Sci. 383, 78–87 (1997)ADSGoogle Scholar
  57. 57.
    K. Sangwal, J. Torrent-Burgues, F. Sanz, J. Servat, Observations of cleavage steps, slip traces and dislocation hollow cores on cleaved 100 faces of L-arginine phosphate monohydrate single crystals by atomic force microscopy. Surf. Sci. 374, 387–396 (1997)ADSGoogle Scholar
  58. 58.
    S.S. Perry, H.I. Kim, S. Imaduddin, S.M. Lee, P.B. Merrill, Generation of atomically flat MgO(100) surfaces: influence of ambient gas composition during high temperature anneals. J. Vac. Sci. Technol. A 16, 3402–3407 (1998)ADSGoogle Scholar
  59. 59.
    K. Sangwal, F. Sanz, P. Gorostiza, Study of the surface morphology of the (100) cleavage planes of MgO single crystals by atomic force microscopy. Surf. Sci. 424, 139–144 (1999)ADSGoogle Scholar
  60. 60.
    D. Scarano, S. Bertarione, F. Cesano, G. Spoto, A. Zecchina, Imaging polycrystalline and smoke MgO surfaces with atomic force microscopy: a case study of high resolution image on a polycrystalline oxide. Surf. Sci. 570, 155–166 (2004)ADSGoogle Scholar
  61. 61.
    D. Abriou, J. Jupille, Self-inhibition of water dissociation on magnesium oxide surfaces. Surf. Sci. 430, L527–L532 (1999)ADSGoogle Scholar
  62. 62.
    K. Højrup-Hansen, S. Ferrero, C.R. Henry, Nucleation and growth kinetics of gold nanoparticles on MgO(100) studied by UHV-AFM. Appl. Surf. Sci. 226, 167–172 (2004)ADSGoogle Scholar
  63. 63.
    K. Sangwal, P. Gorostiza, F. Sanz, In situ study of the recovery of nanoindentation deformation of the (100) face of MgO crystals by atomic force microscopy. Surf. Sci. 442, 161–178 (1999)ADSGoogle Scholar
  64. 64.
    K. Sangwal, P. Gorostiza, F. Sanz, Atomic force microscopy study of nanoindentation creep on the (100) face of MgO single crystals. Surf. Sci. 446, 314–322 (2000)ADSGoogle Scholar
  65. 65.
    E. Perrot, M. Dayez, A. Humbert, O. Marti, C. Chapon, C.R. Henry, Atomic-scale resolution on the MgO(100) surface by scanning force and friction microscopy. EPL (Europhys. Lett.) 26, 659 (1994)ADSGoogle Scholar
  66. 66.
    A.I. Livshits, A.L. Shluger, Self-lubrication in scanning-force-microscope image formation on ionic surfaces. Phys. Rev. B 56, 12482–12489 (1997)ADSGoogle Scholar
  67. 67.
    C. Barth, C. Claeys, C.R. Henry, Surface preparation of hard ionic crystals by ultrahigh vacuum cleavage. Rev. Sci. Instr. 76, 083907 (2005)ADSGoogle Scholar
  68. 68.
    T.V. Ashworth, C.L. Pang, P.L. Wincott, D.J. Vaughan, G. Thornton, Imaging in situ cleaved MgO(100) with non-contact atomic force microscopy. Appl. Surf. Sci. 210, 2–5 (2003)ADSGoogle Scholar
  69. 69.
    K. Fukui, Y. Iwasawa, Observation of a new ridge structure along steps on the MgO(100) surface by non-contact atomic force microscopy. Surf. Sci. 441, 529–541 (1999)ADSGoogle Scholar
  70. 70.
    G. Haas, A. Menck, H. Brune, J.V. Barth, J.A. Venables, K. Kern, Nucleation and growth of supported clusters at defect sites: Pd/MgO(001). Phys. Rev. B 61, 11105–11108 (2000)ADSGoogle Scholar
  71. 71.
    M. Reichling, M. Huisinga, S. Gogoll, C. Barth, Degradation of the CaF2(111) surface by air exposure. Surf. Sci. 439, 181–190 (1999)ADSGoogle Scholar
  72. 72.
    M.T. Sprackling, The Plastic Deformation of Simple Ionic Crystals (Academic Press, London, 1976)Google Scholar
  73. 73.
    M.M. Freund, F. Freund, F. Batlo, Highly mobile oxygen holes in magnesium oxide. Phys. Rev. Lett. 63, 2096–2099 (1989)ADSGoogle Scholar
  74. 74.
    A.M. Ferrari, G. Pacchioni, Electronic structure of F and V centers on the MgO surface. J. Phys. Chem. 99, 17010–17018 (1995)Google Scholar
  75. 75.
    L.N. Kantorovich, J.M. Holender, M.J. Gillan, The energetics and electronic structure of defective and irregular surfaces on MgO. Surf. Sci. 343, 221–239 (1995)ADSGoogle Scholar
  76. 76.
    P. Baranek, G. Pinarello, C. Pisani, R. Dovesi, Ab initio study of the cation vacancy at the surface and in bulk MgO. Phys. Chem. Chem. Phys. 2, 3893–3901 (2000)Google Scholar
  77. 77.
    B.V. King, F. Freund, Surface charges and subsurface space-charge distribution in magnesium oxides containing dissolved traces of water. Phys. Rev. B 29, 5814–5824 (1984)ADSGoogle Scholar
  78. 78.
    J. Goniakowski, C. Noguera, Atomic and electronic structure of steps and kinks on MgO(100) and MgO(110). Surf. Sci. 340, 191–204 (1995)ADSGoogle Scholar
  79. 79.
    P.V. Sushko, J.L. Gavartin, A.L. Shluger, Electronic properties of structural defects at the MgO(001) surface. J. Phys. Chem. B 106, 2269–2276 (2002)Google Scholar
  80. 80.
    L.N. Kantorovich, A.L. Shluger, A.M. Stoneham, Structure and spectroscopy of surface defects from scanning force microscopy: theoretical predictions. Phys. Rev. Lett. 85, 3846–3849 (2000)ADSGoogle Scholar
  81. 81.
    L. Kantorovich, A. Shluger, A. Stoneham, Recognition of surface species in atomic force microscopy: optical properties of a Cr3+ defect at the MgO(001) surface. Phys. Rev. B: Condens. Matter 63, 1–13 (2001)Google Scholar
  82. 82.
    D. Ricci, G. Pacchioni, P.V. Sushko, A.L. Shluger, Electron trapping at neutral divacancy sites on the MgO surface. J. Chem. Phys. 117, 2844–2851 (2002)ADSGoogle Scholar
  83. 83.
    K.P. McKenna, A.L. Shluger, Electron-trapping polycrystalline materials with negative electron affinity. Nat. Mater. 7, 859–862 (2008)ADSGoogle Scholar
  84. 84.
    C. Barth, C.R. Henry, Imaging the MgO(001) surface at atomic scale with a low-temperature nc-AFM. PICO: OMICRON 12, 4–5 (2008)Google Scholar
  85. 85.
    O. Custance, N. Oyabu, Y. Sugimoto, in Force Spectroscopy on Semiconductor Surfaces, ed. by. Noncontact Atomic Force Microscopy (Springer, London, 2009)Google Scholar
  86. 86.
    A. Bettac, J. Koeble, K. Winkler, B. Uder, M. Maier, A. Feltz, QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K. Nanotechnology 20, 264009 (2009)ADSGoogle Scholar
  87. 87.
    S. Benedetti, L. Gragnaniello, M. Franchini, P. Torelli, S. Valeri, Fe self-organization on stepped MgO surfaces. Superlattices Microstruct. 46, 153–158 (2009)ADSGoogle Scholar
  88. 88.
    C. Barth, C.R. Henry, Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study. Phys. Rev. Lett. 98, 136804 (2007)ADSGoogle Scholar
  89. 89.
    R. Bennewitz, M. Reichling, E. Matthias, Force microscopy of cleaved and electron-irradiated CaF2(111) surfaces in ultra-high vacuum. Surf. Sci. 387, 69–77 (1997)ADSGoogle Scholar
  90. 90.
    C. Barth, M. Reichling, Resolving ions and vacancies at step edges on insulating surfaces. Surf. Sci. 470, L99 (2000)ADSGoogle Scholar
  91. 91.
    C. Barth, C.R. Henry, Kelvin probe force microscopy on MgO(001) surfaces and supported Pd nanoclusters. J. Phys. Chem. C 113, 247–253 (2009)Google Scholar
  92. 92.
    M.B. Watkins, A.L. Shluger, Manipulation of defects on oxide surfaces via barrier reduction induced by atomic force microscope tips. Phys. Rev. B: Condens. Matter 73, 245435 (2006)ADSGoogle Scholar
  93. 93.
    G. Geneste, J. Morillo, F. Finocchi, Ab initio study of MgO stoichiometric clusters on the MgO(001) flat surface. Surf. Sci. 532, 508–513 (2003)ADSGoogle Scholar
  94. 94.
    G. Geneste, Dynamische Kraftmikroskopie an reinen und gasdosierten Fluoridoberflächen (PhD). London, New York, San Francisco (2003)Google Scholar
  95. 95.
    L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009)ADSGoogle Scholar
  96. 96.
    L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián, D. Peña, A. Gourdon, G. Meyer, Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012)ADSGoogle Scholar
  97. 97.
    M.L. Sushko, A.Y. Gal, M. Watkins, A.L. Shluger, Modelling of non-contact atomic force microscopy imaging of individual molecules on oxide surfaces. Nanotechnology 17, 2062–2072 (2006)ADSGoogle Scholar
  98. 98.
    T. Trevethan, M. Watkins, L.N. Kantorovich, A.L. Shluger, Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope. Phys. Rev. Lett. 98, 28101 (2007)ADSGoogle Scholar
  99. 99.
    A.S. Foster, aY Gal, Y.J. Lee, aL Shluger, R.M. Nieminen, Dependence of the tip-surface interaction on the surface electronic structure. Appl. Surf. Sci. 210, 146–152 (2003)ADSGoogle Scholar
  100. 100.
    A.S. Foster, A.Y. Gal, J.M. Airaksinen, O.H. Pakarinen, Y.J. Lee, J.D. Gale, A.L. Shluger, R.M. Nieminen, Towards chemical identification in atomic-resolution noncontact AFM imaging with silicon tips. Phys. Rev. B: Condens. Matter 68, 195420 (2003)ADSGoogle Scholar
  101. 101.
    T. Trevethan, L. Kantorovich, Stochastic mechanism of energy dissipation in noncontact atomic force microscopy studied using molecular dynamics with Langevin boundary conditions. Phys. Rev. B: Condens. Matter 70, 1–7 (2004)Google Scholar
  102. 102.
    T. Trevethan, L. Kantorovich, Atomistic simulations of the adhesion hysteresis mechanism of atomic scale dissipation in non-contact atomic force microscopy. Nanotechnology 15, 4–9 (2004)Google Scholar
  103. 103.
    F.F. Canova, A.S. Foster, The role of the tip in non-contact atomic force microscopy dissipation images of ionic surfaces. Nanotechnology 045702, 4–9 (2011)Google Scholar
  104. 104.
    S. Kawai, F.F. Canova, Th Glatzel, A.S. Foster, E. Meyer, Atomic-scale dissipation processes in dynamic force spectroscopy. Phys. Rev. B 84, 115415 (2011)ADSGoogle Scholar
  105. 105.
    T. Trevethan, L. Kantorovich, J. Polesel-Maris, S. Gauthier, A. Shluger, Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip. Phys. Rev. B: Condens. Matter 76, 85414 (2007)ADSGoogle Scholar
  106. 106.
    M. Watkins, T. Trevethan, A. Shluger, L. Kantorovich, Dynamical processes at oxide surfaces studied with the virtual atomic force microscope. Phys. Rev. B: Condens. Matter 76, 1–7 (2007)Google Scholar
  107. 107.
    A.S. Foster, A.L. Shluger, Private communication (2014)Google Scholar
  108. 108.
    J.R.H. Black, W.D. Kingery, Segregation of aliovalent solutes adjacent surfaces in MgO. J. Am. Ceram. Soc. 62, 176–178 (1979)Google Scholar
  109. 109.
    H. Kathrein, F. Freund, Electrical conductivity of magnesium oxide single crystal below 1200 K. J. Phys. Chem. Solids 44, 177–186 (1983)ADSGoogle Scholar
  110. 110.
    H. Kathrein, F. Freund, J. Nagy, O-ions and their relation to traces of H2O and CO2 in magnesium oxide an EPR study. J. Phys. Chem. Solids 45, 1155–1163 (1984)ADSGoogle Scholar
  111. 111.
    F. Freund, G. Debras, G. Demortier, Carbon content of high-purity alkaline earth oxide single crystals grown by Arc fusion. J. Am. Ceram. Soc. 61, 429–434 (1978)Google Scholar
  112. 112.
    H. Wengeler, R. Knobel, H. Kathrein, F. Freund, G. Demortier, G. Wolff, Atomic carbon in magnesium oxide single crystals—depth profiling, temperature-and time-dependent behavior. J. Phys. Chem. Solids 43, 59–71 (1982)ADSGoogle Scholar
  113. 113.
    G. Pacchioni, P. Pescarmona, Structure and stability of oxygen vacancies on sub-surface, terraces, and low-coordinated surface sites of MgO: an ab initio study. Surf. Sci. 412, 657–671 (1998)ADSGoogle Scholar
  114. 114.
    C. Barth, A.S. Foster, M. Reichling, A.L. Shluger, Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory. J. Phys.: Condens. Matter 13, 2061 (2001)ADSGoogle Scholar
  115. 115.
    A.S. Foster, C. Barth, C.R. Henry, Chemical identification of ions in doped NaCl by scanning force microscopy. Phys. Rev. Lett. 102, 256103 (2009)ADSGoogle Scholar
  116. 116.
    A. Sweetman, S. Jarvis, R. Danza, P. Moriarty, Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe. Beilstein. J. Nanotechnol. 3, 25–32 (2012)Google Scholar
  117. 117.
    A. Sweetman, A. Stannard, Y. Sugimoto, M. Abe, S. Morita, P. Moriarty, Simultaneous noncontact AFM and STM of Ag: Si(111)-(√3 × √3)R30°. Phys. Rev. B 87, 075310 (2013)ADSGoogle Scholar
  118. 118.
    M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, The force needed to move an atom on a surface. Science 319, 1066 (2008)ADSGoogle Scholar
  119. 119.
    A. Yurtsever, Y. Sugimoto, H. Tanaka, M. Abe, S. Morita, M. Ondráček, P. Pou, R. Pérez, P. Jelínek, Force mapping on a partially H-covered Si(111) (7 × 7) surface: influence of tip and surface reactivity. Phys. Rev. B: Condens. Matter 87, 155403 (2013)ADSGoogle Scholar
  120. 120.
    M.Z. Baykara, T.C. Schwendemann, E.I. Altman, U.D. Schwarz, Three-dimensional atomic force microscopy-taking surface imaging to the next level. Adv. Mater. 22, 2838–2853 (2010)Google Scholar
  121. 121.
    P. Rahe, J. Schutte, W. Schniederberend, M. Reichling, M. Abe, Y. Sugimoto, A. Kuhnle, Flexible drift-compensation system for precise 3D force mapping in severe drift environments. Rev. Sci. Instr. 82, 063704 (2011)ADSGoogle Scholar
  122. 122.
    D. Ochs, W. Maus-Friedrichs, M. Brause, J. Günster, V. Kempter, V. Puchin, A.L. Shluger, L.N. Kantorovich, Study of the surface electronic structure of MgO bulk crystals and thin films. Surf. Sci. 365, 557–571 (1996)ADSGoogle Scholar
  123. 123.
    E. Scorza, U. Birkenheuer, C. Pisani, The oxygen vacancy at the surface and in bulk MgO: an embedded-cluster study. J. Chem. Phys. 107, 9645–9658 (1997)ADSGoogle Scholar
  124. 124.
    D. Ricci, G. Pacchioni, P.V. Sushko, A.L. Shluger, Reactivity of (H+)(e) color centers at the MgO surface: formation of O2 and N2 radical anions. Surf. Sci. 542, 293–306 (2003)ADSGoogle Scholar
  125. 125.
    K.L. Kliewer, J.S. Koehler, Space charge in ionic crystals. I. General approach with application to NaCl. Phys. Rev. 140, A1226–A1240 (1965)ADSGoogle Scholar
  126. 126.
    K.L. Kliewer, Space charge in ionic crystals. II. The electron affinity and impurity accumulation. Phys. Rev. 140, A1241–A1246 (1965)ADSGoogle Scholar
  127. 127.
    C.R. Henry, Morphology of supported nanoparticles. Prog. Surf. Sci. 80, 92–116 (2005)ADSGoogle Scholar
  128. 128.
    O.H. Pakarinen, C. Barth, A.S. Foster, C.R. Henry, Imaging the real shape of nanoclusters in scanning force microscopy. J. Appl. Phys. 103, 054313 (2008)ADSGoogle Scholar
  129. 129.
    G. Teobaldi, K. Lämmle, T. Trevethan, M. Watkins, A. Schwarz, R. Wiesendanger, A.L. Shluger, Chemical resolution at ionic crystal surfaces using dynamic atomic force microscopy with metallic tips. Phys. Rev. Lett. 106, 216102 (2011)ADSGoogle Scholar
  130. 130.
    F. Mohn, B. Schuler, L. Gross, G. Meyer, Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013)ADSGoogle Scholar
  131. 131.
    M. Sterrer, E. Fischbach, T. Risse, H.J. Freund, Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy. Phys. Rev. Lett. 94, 186101 (2005)ADSGoogle Scholar
  132. 132.
    M.M. Abraham, Y. Chen, L.A. Boatner, R.W. Reynolds, Stable [Li]0 defects in MgO single crystals. Phys. Rev. Lett. 37, 849 (1976)ADSGoogle Scholar
  133. 133.
    Y. Chen, H.T. Tohver, J. Narayan, M.M. Abraham, High-temperature and ionization-induced effects in lithium-doped MgO single crystals. Phys. Rev. B 16, 5535 (1977)ADSGoogle Scholar
  134. 134.
    J.S. Kasper, J.S. Prenner, The crystal structure of Mg6MnO8. Acta Crystallogr. 7, 246–248 (1953)Google Scholar
  135. 135.
    P. Porta, M. Valigi, Magnetic and optical investigation of Mg6MnO8. J. Solid State Chem. 6, 344–347 (1973)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRSMarseille Cedex 09France

Personalised recommendations