Advertisement

Adaptive Visualization of Linked-Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8888)

Abstract

Adaptive visualizations reduces the required cognitive effort to comprehend interactive visual pictures and amplify cognition. Although the research on adaptive visualizations grew in the last years, the existing approaches do not consider the transformation pipeline from data to visual representation for a more efficient and effective adaptation. Further todays systems commonly require an initial training by experts from the field and are limited to adaptation based either on user behavior or on data characteristics. A combination of both is not proposed to our knowledge. This paper introduces an enhanced instantiation of our previously proposed model that combines both: involving different influencing factors for and adapting various levels of visual peculiarities, on content, visual layout, visual presentation, and visual interface. Based on data type and users’ behavior, our system adapts a set of applicable visualization types. Moreover, retinal variables of each visualization type are adapted to meet individual or canonical requirements on both, data types and users’ behavior. Our system does not require an initial expert modeling.

Keywords

Visual Search Visual Representation User Model Application Scenario Information Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.W., Brusilovsky, P.: Adaptive visualization for exploratory information retrieval. Information Processing & Management 49, 1139–1164 (2013)CrossRefGoogle Scholar
  2. 2.
    Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings IUI, pp. 317–328. ACM, New York (2013)Google Scholar
  3. 3.
    Gotz, D., When, Z., Lu, J., Kissa, P., Cao, N., Qian, W.H., Liu, S.X., Zhou, M.X.: Harvest: An intelligent visual analytic tool for the masses. In: Proceedings of IVITA 2010, pp. 1–4. ACM, New York (2010)Google Scholar
  4. 4.
    Ware, C.: Information Visualization Perception for Design. Morgan Kaufmann, Elsevier (2013)Google Scholar
  5. 5.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5, 110–141 (1986)CrossRefGoogle Scholar
  6. 6.
    Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics 13, 1137–1144 (2007)CrossRefGoogle Scholar
  7. 7.
    Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)Google Scholar
  8. 8.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar
  9. 9.
    Nazemi, K., Stab, C., Kuijper, A.: A reference model for adaptive visualization systems. In: Jacko, J. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 480–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Nazemi, K., Kohlhammer, J.: Visual variables in adaptive visualizations. In: Extended Proceedings of UMAP 2013. CEUR Workshop Proceedings, vol. 997 (2013) ISSN 1613-0073Google Scholar
  11. 11.
    Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., Lepouras, G.: A context-based adaptive visualization environment. In: Proceedings of the Conference on Information Visualization, IV 2006, pp. 62–67. IEEE Computer Society, Washington, DC (2006)Google Scholar
  12. 12.
    da Silva, I., Santucci, G., del Sasso Freitas, C.: Ontology Visualization: One Size Does Not Fit All. In: EuroVA 2012: International Workshop on Visual Analytics, pp. 91–95. Eurographics Association (2012)Google Scholar
  13. 13.
    Heath, T., Bizer, C.: Linked Data – Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers (2011)Google Scholar
  14. 14.
    Mendes, P.N., Jakob, M., Bizer, C.: Dbpedia for nlp: A multilingual cross-domain knowledge base. In: Proceedings of LREC 2012, Istanbul, Turkey (2012)Google Scholar
  15. 15.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41–46 (2006)CrossRefGoogle Scholar
  16. 16.
    Nazemi, K., Breyer, M., Forster, J., Burkhardt, D., Kuijper, A.: Interacting with semantics: A user-centered visualization adaptation based on semantics data. In: Human Interface and the Management of Information. Interacting with Information, pp. 239–248 (2011)Google Scholar
  17. 17.
    Freebase consortium: Freebase api. build intelligent apps with freebase data (2013), https://developers.google.com/freebase/ (accessed August 2013)
  18. 18.
    Sleeman, D.: Umfe: a user modelling front-end subsystem. Int. J. Man-Mach. Stud. 23, 71–88 (1985)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis: An algorithm for interaction prediction and activity recognition in adaptive systems. In: Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 607–612. IEEE Press, New York (2010)Google Scholar
  21. 21.
    Nazemi, K., Retz, W., Kohlhammer, J., Kuijper, A.: User similarity and deviation analysis for adaptive visualizations. In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 64–75. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Guo, L., Peng, Q.: A combinative similarity computing measure for collaborative filtering. In: Proceedings of ICCSEE 2013. Advances in Intelligent Systems Research, pp. 1921–1924. Atlantis Press (2013)Google Scholar
  24. 24.
    Brusilovsky, P., Wook Ahn, J., Dumitriu, T., Yudelson, M.: Adaptive knowledge-based visualization for accessing educational examples. In: Tenth International Conference on Information Visualization, IV 2006, pp. 142–150 (2006)Google Scholar
  25. 25.
    Wolfe, J.M.: Guided search 4.0: Current progress with a model of visual search. In: Gray, W. (ed.) Integrated Models of CoSystems, pp. 99–119 (2007)Google Scholar
  26. 26.
    Rensink, R.A.: Change detection. Annual Review of Psychology 53, 245–277 (2002)CrossRefGoogle Scholar
  27. 27.
    Google Press Center: The Knowledge Graph (2013), http://www.google.com/intl/en/insidesearch/features/search/knowledge.html (accessed August 2013)
  28. 28.
    Nazemi, K., Kuijper, A., Hutter, M., Kohlhammer, J., Fellner, D.W.: Measuring context relevance for adaptive semantics visualizations. In: Proceedings of I-KNOW 2014, ACM DL (to appear, 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.TU DarmstadtDarmstadtGermany

Personalised recommendations