Skip to main content

Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking Capability

  • Chapter
FPGAs and Parallel Architectures for Aerospace Applications

Abstract

This paper presents a flexible architecture for a GPS receiver using Partial Reconfiguration (PR) on a System on Chip (SoC) device consisting on an FPGA and two ARM cores. With built-in error-correction techniques offered by modern SOCs, this device meets the requirements of a Brazilian nanosatellite for CONASAT constellation. This receiver benefits from PR, thereby increasing system performance, hardware sharing, and power consumption optimization, among others. Additionally, all the advantages favor in-orbit reconfiguration. The proposed architecture, as requested, uses COTS components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woellert K, Ehrenreund P, Ricco AJ, Hertzfeld H (2010) Cubesats: cost-effective science and technology platforms for emerging and developing nations. Adv Space Res 47:678–679

    Google Scholar 

  2. Taraba M et al (2009) Boeing’s CubeSat TestBed 1 attitude determination design and on-orbit experience. In: Proceedings of the 23rd annual AIAA/USU conference on small satellites

    Google Scholar 

  3. Weeks D, Marley AB, London III J (2009) SMDC-ONE: an army nanosatellite technology demonstration. In: Proceedings of the 23rd annual AIAA/USU conference on small satellites

    Google Scholar 

  4. Staehle RL, Anderson B, Betts B, Blaney D, Chow C, Friedman L, Hemmati H, Jones D, Klesh A, Liewer P, Lazio J, Lo M, Mouroulis P, Murphy N, Pingree PJ, Puig-Suari J, Svitek T, Williams A, Wilson T (2012) Interplanetary CubeSats: opening the solar system to a broad community at lower cost. In: Final report on NIAC phase 1 to NASA Office of the Chief Technologist, Jet Propulsion Laboratory, 2012. (Submitted to Journal of Small Satellites. http://www.nasa.gov/pdf/716078main_Staehle_2011_PhI_CubeSat.pdf)

  5. Choi S et al (2003) Energy-efficient signal processing using FPGAs. In: Proceedings of the 2003 ACM/SIGDA eleventh international symposium on field programmable gate arrays. ACM

    Google Scholar 

  6. Savani VG, Mecwan AI, Gajjar NP (2011) Dynamic partial reconfiguration of FPGA for SEU mitigation and area efficiency. Int J Adv Technol 2(2):285–291

    Google Scholar 

  7. Zhang J, Guan Y, Mao C (2013) Optimal partial reconfiguration for permanent fault recovery on SRAM-based FPGAs in space mission. Adv Mech Eng

    Google Scholar 

  8. INPE (2011) Constelação de nano satélites para coleta de dados ambientais: documento de descrição da missão DDM. http://www.crn2.inpe.br/conasat1/Documentos/gerais/Documento%20de%20Descri%E7%E3o%20da%20Miss%E3o%20%28Equipe%20CONASAT%29.pdf

  9. Shapiro AM (2010) FPGA-based real-time GPS receiver. Dissertations, Cornell University

    Google Scholar 

  10. Hobiger T et al (2010) A GPU based real-time GPS software receiver. GPS Sol 14(2):207–216

    Article  Google Scholar 

  11. O’Hanlon B et al (2011) CASES: a smart, compact GPS software receiver for space weather monitoring. In: Proceedings of the ION GNSS meeting

    Google Scholar 

  12. Dovis F et al (2001) On the tracking performance of a Galileo/GPS receiver based on hybrid FPGA/DSP board. In: Proceedings of the 18th international technical meeting of the satellite division of institute of navigation (ION GNSS 2005)

    Google Scholar 

  13. ESA Navipedia (2014) Generic receiver description. http://www.navipedia.net/index.php/Generic_Receiver_Description#Receiver_overview. Accessed 22 June 2014

  14. Noroozi A (2013) A reconfigurable GPS/Galileo receiver front-end for space applications. Dissertations and Theses, Delft University of Technology, Netherlands. Web. 12 June 2014

    Google Scholar 

  15. Francisco M, Albuquerque G, Rapôso T (2011) A GPS receiver for use in sounding rockets. In: 20th symposium on European rocket and balloon programmes and related research, vol 700

    Google Scholar 

  16. Unwin MJ, Oldfield MK, Underwood CI, Harboe-Sorensen R (1998) In: Proceedings of the 11th international technical meeting of the satellite division of the Institute of Navigation (ION-GPS-1998), Nashville, 15–18 Sep 1998, pp 1983–198

    Google Scholar 

  17. Markgraf M et al (2001) A low cost GPS system for real-time tracking of sounding rockets. European space agency-publications-ESA SP 471, pp 495–502

    Google Scholar 

  18. Underwood C et al (2004) Radiation testing campaign for a new miniaturised space GPS receiver. In: IEEE radiation effects data workshop, July 22, Atlanta, USA, pp 120–124

    Google Scholar 

  19. Graczyk R et al (2012) Dynamic partial FPGA reconfiguration in space applications. In: Photonics applications in astronomy, communications, industry, and high-energy physics experiments 2012. International Society for Optics and Photonics

    Google Scholar 

  20. Jan K, Straka M, Kotasek Z (2012) Methodology for increasing reliability of FPGA design via partial reconfiguration. In: The first workshop on manufacturable and dependable multicore architectures at nanoscale (MEDIAN’12), Annecy

    Google Scholar 

  21. Azambuja JR, Sousa F, Rosa L, Kastensmidt FL (2009) Evaluating large grain TMR and selective partial reconfiguration for soft error mitigation in SRAM-based FPGAs. In: On-line testing symposium, IOLTS 2009, pp 101–106

    Google Scholar 

  22. Pilotto C, Azambuja JR, Kastensmidt FL (2008) Synchronizing triple modular redundant designs in dynamic partial reconguration applications. In: SBCCI ’08: Proceedings of the 21st annual symposium on integrated circuits and system design. ACM, New York, pp 199–204

    Google Scholar 

  23. Altera Corporation (2012) SEU mitigation for cyclone V devices. http://www.altera.com/literature/hb/cyclone-v/cv_52008.pdf. Accessed 2 May 2014

  24. Wertz JR, Larson WJ (1999) Space mission analysis and design. Kluwer Academic, Dordrecht

    Google Scholar 

  25. Bedmutha ND, Biraris PN, Shah JP (2013) A low cost GNSS software receiver design with SEE mitigation approach for microsatellites. In: Space science and communication (IconSpace), 2013 IEEE International Conference on IEEE

    Google Scholar 

  26. Hayim A, Knieser M, Rizkalla M (2010) DSPs/FPGAs comparative study for power consumption, noise cancellation, and real time high speed applications. J Softw Eng Appl 3(4):391

    Article  Google Scholar 

  27. Ferlini F et al. (2012) Non-intrusive fault tolerance in soft processors through circuit duplication. In: Proceedings of the 2012, 13th Latin American test workshop (LATW), IEEE, 2012

    Google Scholar 

  28. Montenbruck O (2008) GNSS receivers for space applications. Lecture. In: ACES and future GNSS-based earth observation and navigation

    Google Scholar 

  29. Hoyt R, Voronka N, Newton T, Barnes I, Shepherd J, Frank SS, Slostad J, Jaroux B, Twiggs R (2007) Early results of the multi-application survivable tether (MAST) space tether experiment; SSC07-VII-8/048; 21st annual AIAA/USU conference on small satellites, 13–16 Aug 2007, Logan, UT, USA

    Google Scholar 

  30. Scholz A, König F, Fröhlich S, Piepenbrock J (2009) Flight results of the COMPASS-1 Mission. http://www.raumfahrt.fh-aachen.de/compass-1/download/COMPASS-1%20Flight%20Results.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauberto L. A. Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albuquerque, G.L.A., Carvalho, M.J.M., Valderrama, C. (2016). Brazilian Nano-satellite with Reconfigurable SOC GNSS Receiver Tracking Capability. In: Kastensmidt, F., Rech, P. (eds) FPGAs and Parallel Architectures for Aerospace Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14352-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14352-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14351-4

  • Online ISBN: 978-3-319-14352-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics