Advertisement

The Impact of Attribute Preferences on Adoption Timing of Hotel Distribution Channels: Are OTAs Winning the Customer Race?

Conference paper

Abstract

The evolution of distribution channels in the hospitality industry has followed diverse paths over time depending on the technology used. Distribution channels can be clustered into three generations, starting with the pre-WWW era; the middle generation comprising Internet-based direct booking channels and the latest generation including online intermediaries. This research focuses on the comparison of rates of adoption across different generations of distribution channels in the Swiss hotel sector taking into account substitution effects. Data for the study are a series of annual surveys (2002–2013) monitoring the evolution of market shares of 15 individual distribution channels. The objective of this research is the analysis of the evolution of market shares of different generations using multi-generation diffusion methods. Results suggest that decaying traditional and web-based direct channels have low or inexistent imitation effect. This research adds the explanation of mixed effects (innovation and imitation) across generations in the adoption processes.

Keywords

Hotel Distribution OTA Switzerland Norton-Bass model Mixed effect analysis Negative exponential 

References

  1. Bass, F. M. (1969). A new product growth model for consumer durables. Management Science, 15(5), 215–227.CrossRefGoogle Scholar
  2. Bass, F. M., Jain, D., & Khishnan, T. (2000). Modeling the marketing-mix influence in new-product diffusion. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models. Boston, MA: Kluwer.Google Scholar
  3. Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet – The state of eTourism research. Tourism Management, 29(4), 609–623.CrossRefGoogle Scholar
  4. Card, J. A., Chen, C.-Y., & Cole, S. T. (2003). Online travel products shopping: Differences between shoppers and nonshoppers. Journal of Travel Research, 42(November), 133–139.CrossRefGoogle Scholar
  5. Christodoulidou, N., Connolly, D. J., & Brewer, P. (2010). An examination of the transactional relationship between online travel agencies, travel meta sites, and suppliers. International Journal of Contemporary Hospitality Management, 22(7), 1048–1062.CrossRefGoogle Scholar
  6. Easingwood, C. J., Mahajan, V., & Muller, E. (1983). A nonuniform influence innovation diffusion model of new product. Marketing Science, 2(3), 273–295.CrossRefGoogle Scholar
  7. Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75–88.CrossRefGoogle Scholar
  8. Fourt, L. A., & Woodlock, J. W. (1960). Early prediction of market success for new grocery products. Journal of Marketing, 25(25 October), 31–38.CrossRefGoogle Scholar
  9. Horan, P., & Frew, A. (2005). Electronic distribution effectiveness amongst small and medium-sized enterprises in the hotel sector. Retrieved from http://arrow.dit.ie/tfschmtcon/11
  10. Ip, C., Leung, R., & Law, R. (2011). Progress and development of information and communication technologies in hospitality. International Journal of Contemporary Hospitality Management, 23(4), 533–551.CrossRefGoogle Scholar
  11. Islam, T. (2014). Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data. Energy Policy, 65, 340–350.CrossRefGoogle Scholar
  12. Islam, T., & Meade, N. (2013). The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation. Energy Policy, 55, 521–530.CrossRefGoogle Scholar
  13. Jang, S. S. (2005). The past, present, and future research of online information search. Journal of Travel & Tourism Marketing, 17(2–3), 41–47.Google Scholar
  14. Kang, B., Brewer, K. P., & Baloglu, S. (2007). Profitability and survivability of hotel distribution channels: An industry perspective. Journal of Travel and Tourism Marketing, 22(1), 37–50.CrossRefGoogle Scholar
  15. Kracht, J., & Wang, Y. (2010). Examining the tourism distribution channel: Evolution and transformation. International Journal of Contemporary Hospitality Management, 22(4–5), 736–757.CrossRefGoogle Scholar
  16. Law, R., & Jogaratnam, G. (2005). A study of hotel information technology applications. International Journal of Contemporary Hospitality Management, 17(2), 170–180.CrossRefGoogle Scholar
  17. Li, X., Pan, B., Zhang, L., & Smith, W. W. (2009). The effect of online information search on image development. Journal of Travel Research, 48(1), 45–57. doi: 10.1177/0047287508328659.CrossRefGoogle Scholar
  18. Lilien, G. L., Rangaswamy, A., & Van Den Bulte, C. (2000). Diffusion models: Managerial applications and software. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-product diffusion models (pp. 295–336). Dordrecht: Kluwer.Google Scholar
  19. Mahajan, V., & Muller, E. (1996). Timing, diffusion, and substitution of successive generations of technological innovations: The IBM mainframe case. Technological Forecasting and Social Change, 51(2), 109–132.CrossRefGoogle Scholar
  20. Mahajan, V., Muller, E., & Srivastava, R. (1990). Determination of adopter categories by using innovation diffusion models. Journal of Marketing Research, XXVII(February), 37–50.CrossRefGoogle Scholar
  21. Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation-A 25-year review. International Journal of Forecasting, 22(3), 519–545.CrossRefGoogle Scholar
  22. Morosan, C., & Jeong, M. (2008). Users’ perceptions of two types of hotel reservation web sites. International Journal of Hospitality Management, 27(2), 284–292.CrossRefGoogle Scholar
  23. Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069–1086.CrossRefGoogle Scholar
  24. Norton, J. A., & Bass, F. M. (1992). Evolution of technological generations: The law of capture. Sloan Management Review, 33(2), 66–77. doi: 10.1287/mnsc.33.9.1069.Google Scholar
  25. O'Connor, P., & Frew, A. J. (2002). The future of hotel electronic distribution: Expert and industry perspectives. Cornell Hotel and Restaurant Administration Quarterly, 43(3), 33–45.CrossRefGoogle Scholar
  26. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York, NY: The Free Press.Google Scholar
  27. Runfola, A., Rosati, M., & Guercini, S. (2013). New business models in online hotel distribution: Emerging private sales versus leading IDS. Service Business, 7(2), 183–205.CrossRefGoogle Scholar
  28. SAS Institute Inc. (2011). SAS/STAT® 9.22 user’s guide. Cary, NC: SAS Institute Inc.Google Scholar
  29. Scaglione, M., Ismail, A. F., Trabichet, J.-P., & Murphy, J. (2010). An investigation of leapfrogging and Web 2.0 implementation. In U. Gretzel, R. Law, & M. Fuchs (Eds.), Information and communication technologies in tourism 2010 (pp. 441–453). Vienna: Springer.CrossRefGoogle Scholar
  30. Scaglione, M., Schegg, R., & Murphy, J. (2009). Website adoption and sales performance in Valais’ hospitality industry. Technovation, 29(9), 625–631.CrossRefGoogle Scholar
  31. Schegg, R., & Scaglione, M. (2013). Substitution effects across hotel distribution channels. In Z. Xiang & I. Tussyadiah (Eds.), Information and communication technologies in tourism 2014 (pp. 801–812). Vienna: Springer.CrossRefGoogle Scholar
  32. Schegg, R., Scaglione, M., Liebrich, A., & Murphy, J. (2007). Internet use by hospitality SMEs in alpine destinations. In M. Sigala, J. Murphy, & L. Mich (Eds.), Proceedings of the ENTER conference 2007, Ljubljana, Slovenia: Information and communication technologies in tourism 2007 (pp. 469–480). New York, NY: Springer.Google Scholar
  33. Scott, N., Burgess, S., Monday, A., OBrien, P., Baggio, R., Sellitto, C., et al. (2010). Helping tourism SMEs plan and implement information and communication technology. Retrieved September 1, 2013, from http://espace.library.uq.edu.au/view/UQ:226964
  34. Sultan, F., Farley, J. U., & Lehmann, D. R. (1990). A meta-analysis of applications of diffusion models. Journal of Marketing Research, XXVII(February), 70–77.CrossRefGoogle Scholar
  35. Toh, R. S., Raven, P., & DeKay, F. (2011). Selling rooms: Hotels vs. third-party websites. Cornell Hospitality Quarterly, 52(2), 181–189.CrossRefGoogle Scholar
  36. Werthner, H., & Klein, S. (1999). ICT and the changing landscape of global tourism distribution. Electronic Markets, 9(4), 256–262.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut de Tourisme (ITO)HES-SO ValaisSionSwitzerland

Personalised recommendations