Chaotic Versus Regular Behavior in Yang-Mills Theories

  • A. NicolaidisEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 163)


We consider spatially uniform \(SU(2)\) color fields. At the classical level the system exhibits almost exclusively chaotic behavior. To include quantum effects, we introduce a renormalization-group improved effective action, where the fixed coupling constant \(g\) is replaced by a running coupling constant \(g\), depending upon the color magnetic field. The effective Lagrangian gives rise to invariant tori which occupy a significant portion of the phase space and sustain ordered behavior. For some energy values, stable periodic orbits exist, with the corresponding gluon field being color neutral.


Quantum Correction Symmetric Solution Pitchfork Bifurcation Chaotic Orbit Stable Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Prof. Boyka Aneva for a warm hospitality and perfect organization.


  1. 1.
    G. Baseyan, S. Matinyan, G. Savvidi, Pis’ma Zh. Eksp. Teor. Fiz. 29, 641 (1979) (JETP Lett. 29, 587 (1979))Google Scholar
  2. 2.
    S. Matinyan, G. Savvidi, N. Ter-Arutyunan-Savvidi, Zh. Eksp. Teor. Fiz. 80, 830 (1981) (Sov. Phys. JETP 53, 421 (1981))Google Scholar
  3. 3.
    G. Savvidy, Nucl. Phys. B 246, 302 (1984)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    E. Nikolaevskii, L. Shur, Pis’ma Zh. Eksp. Teor. Fiz. 36, 176 (1982) (JETP Lett. 36, 218 (1982))Google Scholar
  5. 5.
    S.J. Chang, Phys. Rev. D 29, 259 (1984)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. Carnegie, I. Percival, J. Phys. A 17, 801 (1984)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    P. Dahlquist, G. Russberg, Phys. Rev. Lett. 65, 2837 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. Matinyan, G. Savvidy, Nucl. Phys. B 134, 539 (1978)CrossRefADSGoogle Scholar
  9. 9.
    H. Pagels, E. Tomboulis, Nucl. Phys. B 143, 485 (1978)Google Scholar
  10. 10.
    L. Maiani, G. Martinelli, G. Rossi, M. Testa, Nucl. Phys. B 273, 275 (1986)CrossRefADSGoogle Scholar
  11. 11.
    S. Adler, T. Piran, Rev. Mod. Phys. 56, 1 (1984)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Y. Simonov, Perturbative theory in the nonperturbative QCD vacuum, Heidelberg Report No. HD-THEP-93-16 (unpublished)Google Scholar
  13. 13.
    A. Nicolaidis, S. Ichtiaroglou, G. Voyatzis, Phys. Rev. D 52, 3700 (1984)CrossRefADSGoogle Scholar
  14. 14.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1995)Google Scholar
  15. 15.
    J. Mandula, Phys. Lett. 67B, 175 (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations