Skip to main content

Parallel Shared-Memory Multi-Objective Stochastic Search for Competitive Facility Location

  • Conference paper
  • 1572 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8805)


A stochastic search algorithm for local multi-objective optimization is developed and applied to solve a multi-objective competitive facility problem for firm expansion using shared-memory parallel computing systems. The performance of the developed algorithm is experimentally investigated by solving competitive facility location problems, using up to 16 shared-memory processing units. It is shown that the developed algorithm has advantages against its precursor in the sense of the precision of optimization and that it has almost linear speed-up on 16 shared-memory processing units, when solving competitive facility location problems of different scope reasonable for practical applications.


  • Facility Location
  • Multi-Objective Optimization
  • Stochastic Search
  • Shared Memory Parallel Computing


  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    CrossRef  Google Scholar 

  2. Drezner, Z., Klamroth, K., Schobel, A., Wesolowsky, G.O.: The Weber problem. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Applications and Theory, pp. 1–36. Springer, Berlin (2002)

    Google Scholar 

  3. Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega 45(0), 92–118 (2014)

    CrossRef  Google Scholar 

  4. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: An interval lexicographical-like solution procedure. Networks and Spatial Economics 7(1), 19–44 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Friesz, T., Miller, T., Tobin, R.: Competitive networks facility location models: a survey. Papers in Regional Science 65, 47–57 (1998)

    CrossRef  Google Scholar 

  6. Huapu, L., Jifeng, W.: Study on the location of distribution centers: A bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)

    Google Scholar 

  7. Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Analysis: Modelling and Control 18(3), 293–313 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Lančinskas, A., Žilinskas, J.: Approaches to parallelize pareto ranking in NSGA-II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Lančinskas, A., Żilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Öster, P. (eds.) PARA. LNCS, vol. 7782, pp. 422–433. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  10. Lančinskas, A., Žilinskas, J.: Parallel multi-objective memetic algorithm for competitive facility location. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 354–363. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  11. Medaglia, A.L., Villegas, J.G., Rodrguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. Journal of Heuristics 15(2), 153–176 (2009)

    CrossRef  MATH  Google Scholar 

  12. Plastria, F.: Static competitive facility location: An overview of optimisation approaches. European Journal of Operational Research 129(3), 461–470 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: Application to a competitive facility location problem. In: Casillas, J., Martínez-López, F.J., Corchado, J.M. (eds.) Management of Intelligent Systems. AISC, vol. 171, pp. 207–216. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  14. ReVelle, C., Eiselt, H., Daskin, M.: A bibliography for some fundamental problem categories in discrete location science. European Journal of Operational Research 184(3), 817–848 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Villegas, J., Palacios, F., Medaglia, A.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Annals of Operations Research 147, 109–141 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Weber, A.: Theory of the Location of Industries. University of Chicago Press (1929)

    Google Scholar 

  17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  18. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lančinskas, A., Ortigosa, P.M., Žilinskas, J. (2014). Parallel Shared-Memory Multi-Objective Stochastic Search for Competitive Facility Location. In: , et al. Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014. Lecture Notes in Computer Science, vol 8805. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14324-8

  • Online ISBN: 978-3-319-14325-5

  • eBook Packages: Computer ScienceComputer Science (R0)