Abstract
A stochastic search algorithm for local multi-objective optimization is developed and applied to solve a multi-objective competitive facility problem for firm expansion using shared-memory parallel computing systems. The performance of the developed algorithm is experimentally investigated by solving competitive facility location problems, using up to 16 shared-memory processing units. It is shown that the developed algorithm has advantages against its precursor in the sense of the precision of optimization and that it has almost linear speed-up on 16 shared-memory processing units, when solving competitive facility location problems of different scope reasonable for practical applications.
Chapter PDF
Similar content being viewed by others
Keywords
References
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)
Drezner, Z., Klamroth, K., Schobel, A., Wesolowsky, G.O.: The Weber problem. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Applications and Theory, pp. 1–36. Springer, Berlin (2002)
Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: An overview of classifications, models, solution techniques and applications. Omega 45(0), 92–118 (2014)
Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: An interval lexicographical-like solution procedure. Networks and Spatial Economics 7(1), 19–44 (2007)
Friesz, T., Miller, T., Tobin, R.: Competitive networks facility location models: a survey. Papers in Regional Science 65, 47–57 (1998)
Huapu, L., Jifeng, W.: Study on the location of distribution centers: A bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)
Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Analysis: Modelling and Control 18(3), 293–313 (2013)
Lančinskas, A., Žilinskas, J.: Approaches to parallelize pareto ranking in NSGA-II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012)
Lančinskas, A., Żilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Öster, P. (eds.) PARA. LNCS, vol. 7782, pp. 422–433. Springer, Heidelberg (2013)
Lančinskas, A., Žilinskas, J.: Parallel multi-objective memetic algorithm for competitive facility location. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 354–363. Springer, Heidelberg (2014)
Medaglia, A.L., Villegas, J.G., Rodrguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. Journal of Heuristics 15(2), 153–176 (2009)
Plastria, F.: Static competitive facility location: An overview of optimisation approaches. European Journal of Operational Research 129(3), 461–470 (2001)
Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: Application to a competitive facility location problem. In: Casillas, J., Martínez-López, F.J., Corchado, J.M. (eds.) Management of Intelligent Systems. AISC, vol. 171, pp. 207–216. Springer, Heidelberg (2012)
ReVelle, C., Eiselt, H., Daskin, M.: A bibliography for some fundamental problem categories in discrete location science. European Journal of Operational Research 184(3), 817–848 (2008)
Villegas, J., Palacios, F., Medaglia, A.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Annals of Operations Research 147, 109–141 (2006)
Weber, A.: Theory of the Location of Industries. University of Chicago Press (1929)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lančinskas, A., Ortigosa, P.M., Žilinskas, J. (2014). Parallel Shared-Memory Multi-Objective Stochastic Search for Competitive Facility Location. In: Lopes, L., et al. Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014. Lecture Notes in Computer Science, vol 8805. Springer, Cham. https://doi.org/10.1007/978-3-319-14325-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-14325-5_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14324-8
Online ISBN: 978-3-319-14325-5
eBook Packages: Computer ScienceComputer Science (R0)