A Survey on Parallel and Distributed Multi-Agent Systems

  • Alban Rousset
  • Bénédicte Herrmann
  • Christophe Lang
  • Laurent Philippe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8805)

Abstract

Simulation has become an indispensable tool for researchers to explore systems without having recourse to real experiments. Depending on the characteristics of the modeled system, methods used to represent the system may vary. Multi-agent systems are, thus, often used to model and simulate complex systems. Whatever modeling type used, increasing the size and the precision of the model increases the amount of computation, requiring the use of parallel systems when it becomes too large. In this paper, we focus on parallel platforms that support multi-agent simulations. Our contribution is a survey on existing platforms and their evaluation in the context of high performance computing. We present a qualitative analysis, mainly based on platform properties, then a performance comparison using the same agent model implemented on each platform.

Keywords

multi-agent simulation parallelism MAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An environment for implementing and running spatially explicit multi-agent simulations. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS, vol. 5044, pp. 359–371. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Angelotti, E.S., Scalabrin, E.E., Ávila, B.C.: Pandora: a multi-agent system using paraconsistent logic. In: Computational Intelligence and Multimedia Applications, ICCIMA 2001, pp. 352–356. IEEE (2001)Google Scholar
  3. 3.
    Bellifemine, F., Poggi, A., Rimassa, G.: Jade–a fipa-compliant agent framework. In: Proceedings of PAAM, London, vol. 99, p. 33 (1999)Google Scholar
  4. 4.
    Berryman, M.: Review of software platforms for agent based models. Technical report, DTIC Document (2008)Google Scholar
  5. 5.
    Bordini, R.H., Braubach, L., Dastani, M., El Fallah-Seghrouchni, A., Gomez-Sanz, J.J., Leite, J., O’Hare, G.M., Pokahr, A., Ricci, A.: A survey of programming languages and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)MATHGoogle Scholar
  6. 6.
    Carslaw, G.: Agent based modelling in social psychology. PhD thesis, University of Birmingham (2013)Google Scholar
  7. 7.
    Červenka, R., Trenčanský, I., Calisti, M., Greenwood, D.P.A.: AML: Agent modeling language toward industry-grade agent-based modeling. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 31–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Exploitation of hpc in the flame agent-based simulation framework. In: Proceedings of the 2012 IEEE 14th Int. Conf. on HPC and Communication & 2012 IEEE 9th Int. Conf. on Embedded Software and Systemsm, HPCC 2012, pp. 538–545. IEEE Computer Society, Washington, DC (2012)Google Scholar
  9. 9.
    Coakley, S., Smallwood, R., Holcombe, M.: Simon Coakley, Rod Smallwood, and Mike Holcombe. Using x-machines as a formal basis for describing agents in agent-based modelling. Simulation Series 38(2), 33 (2006)MathSciNetGoogle Scholar
  10. 10.
    Collier, N., North, M.: Repast HPC: A platform for large-scale agentbased modeling. Wiley (2011)Google Scholar
  11. 11.
    Collier, N.: Repast hpc manual (2010)Google Scholar
  12. 12.
    Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A Framework for Distributing Agent-Based Simulations. In: Alexander, M., et al. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Ferber, J., Perrot, J.-F.: Les systèmes multi-agents: vers une intelligence collective, InterEditions Paris (1995)Google Scholar
  14. 14.
    Frigo, M., Johnson, S.G.: The design and implementation of fftw3. Proceedings of the IEEE 93(2), 216–231 (2005)CrossRefGoogle Scholar
  15. 15.
    Gasser, L., Kakugawa, K.: Mace3j: fast flexible distributed simulation of large, large-grain multi-agent systems. In: Proceedings of the First Inter. Joint Conf. on Autonomous Agents and Multiagent Systems: part 2, pp. 745–752. ACM (2002)Google Scholar
  16. 16.
    Heath, B., Hill, R., Ciarallo, F.: A survey of agent-based modeling practices (january 1998 to july 2008). JASSS 12(4), 9 (2009)Google Scholar
  17. 17.
    Himmelspach, J., Uhrmacher, A.M.: Plug’n simulate. In: Proceedings of the 40th Annual Simulation Symposium, ANSS 2007, pp. 137–143. IEEE Computer Society, Washington, DC (2007)Google Scholar
  18. 18.
    Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based modelling of complex systems. In: Proceedings of the 2006 European Conf. on Complex Systems (2006)Google Scholar
  19. 19.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: MASON: A New Multi-Agent Simulation Toolkit. Simulation 81(7), 517–527 (2005)CrossRefGoogle Scholar
  20. 20.
    Márquez, C., César, E., Sorribes, J.: A load balancing schema for agent-based spmd applications. In: International Conf. on Parallel and Distributed Processing Techniques and Applications, PDPTA (accepted 2013)Google Scholar
  21. 21.
    North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling 1(1), 1–26 (2013)CrossRefGoogle Scholar
  22. 22.
    Oguara, T., Theodoropoulos, G., Logan, B., Lees, M., Dan, C.: Pdes-mas: A unifying framework for the distributed simulation of multi-agent systems. School of computer science research - University of Birmingham 6 (2007)Google Scholar
  23. 23.
    Rodin, V., Benzinou, A., Guillaud, A., Ballet, P., Harrouet, F., Tisseau, J., Le Bihan, J.: An immune oriented multi-agent system for biological image processing. Pattern Recognition 37(4), 631–645 (2004)CrossRefGoogle Scholar
  24. 24.
    Scheutz, M., Schermerhorn, P., Connaughton, R., Dingler, A.: Swages-an extendable distributed experimentation system for large-scale agent-based alife simulations. Proceedings of Artificial Life X, 412–419 (2006)Google Scholar
  25. 25.
    Simon, H.A.: The architecture of complexity. Springer (1991)Google Scholar
  26. 26.
    Standish, R.K., Leow, R.: Ecolab: Agent based modeling for c++ programmers. arXiv preprint cs/0401026 (2004)Google Scholar
  27. 27.
    Suryanarayanan, V., Theodoropoulos, G., Lees, M.: Pdes-mas: Distributed simulation of multi-agent systems. Procedia Comp. Sc. 18, 671–681 (2013)CrossRefGoogle Scholar
  28. 28.
    Tisue, S., Wilensky, U.: Netlogo: Design and implementation of a multi-agent modeling environment. In: Proceedings of Agent, vol. 2004, pp. 7–9 (2004)Google Scholar
  29. 29.
    Tobias, R., Hofmann, C.: Evaluation of free java-libraries for social-scientific agent based simulation. JASS 7(1) (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alban Rousset
    • 1
  • Bénédicte Herrmann
    • 1
  • Christophe Lang
    • 1
  • Laurent Philippe
    • 1
  1. 1.Femto-ST Institute University of Franche-ComtéBesançon cedexFrance

Personalised recommendations