EXAHD: An Exa-scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8806)


High-dimensional problems pose a challenge for tomorrow’s supercomputing. Problems that require the joint discretization of more dimensions than space and time are among the most compute-hungry ones and thus standard candidates for exascale computing and even beyond. This project tackles such problems by a hierarchical extrapolation approach, the sparse grid combination technique. The method not only enables their treatment in the first place. The hierarchical approach also provides novel ways to deal with central problems in high-performance computing such as scalability and resilience: Global communication can be avoided and reduced to a small subset, and faults can be compensated for without the need for recomputations or checkpoint-restart. As an exemplary prototype for high-dimensional problems, turbulence simulations in plasma physics are studied.


Partial Solution Sparse Grid Combination Technique Turbulence Simulation Subspace Reduce 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dannert, T., Jenko, F.: Vlasov simulation of kinetic shear alfvén waves. Computer Physics Communications 163(2), 67–78 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dannert, T., Marek, A., Rampp, M.: Porting large HPC applications to GPU clusters: The codes GENE and VERTEX. Parallel Computing: Accelerating CSE. Advances in Parallel Computing 25, 305–314 (2014)Google Scholar
  3. 3.
    Görler, T.: Multiscale effects in plasma microturbulence. Ph.D. thesis, Universität Ulm (2009)Google Scholar
  4. 4.
    Griebel, M.: A domain decomposition method using sparse grids. In: Contemporary Mathematics, DDM6, vol. 157, pp. 255–261. Am. Math. Soc (1994)Google Scholar
  5. 5.
    Griebel, M., Huber, W., Rüde, U., Störtkuhl, T.: The combination technique for parallel sparse-grid-preconditioning or -solution of PDEs on workstation networks. In: Parallel Processing: CONPAR 92 VAPP V, LNCS, vol. 634 (1992)Google Scholar
  6. 6.
    Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Iterative Methods in Lin. Alg, pp. 263–281 (1992)Google Scholar
  7. 7.
    Harding, B., Hegland, M.: A robust combination technique. In: CTAC-2012. ANZIAM J., vol. 54, pp. 394–411 (August 2013)Google Scholar
  8. 8.
    Harding, B., Hegland, M.: Robust solutions to PDEs with multiple grids. In: Garcke, J., Pfluger, D. (eds.) Sparse Grids and Applications 2012. LNCISE, vol. 97, pp. 171–193. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with the sparse grid combination technique. In: Parallel Computing: Accelerating CSE. Advances in Parallel Computing, vol. 25, pp. 574–583 (2014)Google Scholar
  10. 10.
    Hegland, M.: Adaptive sparse grids. In: Proc. of 10th Computational Techniques and Applications Conference CTAC-2001., vol. 44, pp. C335–C353 (2003)Google Scholar
  11. 11.
    Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra and its Applications 420(2–3), 249–275 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Hegland, M.: Adaptive sparse grids. ANZIAM Journal 44, C335–C353 (2003)Google Scholar
  13. 13.
    Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical solution of high-dimensional PDEs. Parallel Computing (submitted)Google Scholar
  14. 14.
    Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global communication schemes for the sparse grid combination technique. Parallel Computing: Accelerating CSE. Advances in Parallel Computing 25, 564–573 (2014)Google Scholar
  15. 15.
    Keyes, D.E.: Exaflop/s: The why and the how. Comptes Rendus Mcanique 339(2–3), 70–77 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kowitz, C., Pflüger, D., Jenko, F., Hegland, M.: The Combination Technique for the Initial Value Problem in Linear Gyrokinetics. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications. LNCSE, vol. 88, pp. 205–222. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Larson, J., Hegland, M., et al.: Fault-tolerant grid-based solvers: Combining concepts from sparse grids and mapreduce. Proc. Comp. Science 18, 130–139 (2013)CrossRefGoogle Scholar
  18. 18.
    Wesson, J., Campbell, D.: Tokamaks. International Series of Monographs on Physics. OUP Oxford (2011)Google Scholar
  19. 19.
    Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Comm. of the ACM 52(4), 65–76 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Parallel and Distributed SystemsUniversity of StuttgartGermany
  2. 2.Scientific ComputingTechnische Universität MünchenGermany
  3. 3.Institute for Numerical SimulationUniversity of BonnGermany
  4. 4.Max Planck Institute for Plasma PhysicsGermany
  5. 5.Computing Centre of the Max Planck Society and the MPI for Plasma PhysicsGermany

Personalised recommendations