Exploring the Throughput-Fairness Trade-off on Asymmetric Multicore Systems

  • Juan Carlos Saez
  • Adrian Pousa
  • Fernando Castro
  • Daniel Chaver
  • Manuel Prieto-Matías
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8806)


Symmetric-ISA (instruction set architecture) asymmetric-performance multicore processors (AMPs) were shown to deliver higher performance per watt and area than symmetric CMPs (Chip Multi-Processors). Previous work has shown that this potential of AMP systems can be realizable thanks to the OS scheduler. Existing scheduling schemes that deliver fairness and priority enforcement on AMPs do not cater to the fact that applications in a multiprogram workload may derive different benefit from using fast cores in the system. As a result, they are likely to perform thread-to-core mappings that degrade the system throughput. To address this limitation, we propose Prop-SP, a scheduling algorithm that aims to improve the throughput-fairness trade-off on AMPs. Our evaluation on real hardware, and using scheduler implementations on a general-purpose OS, reveals that Prop-SP delivers a better throughput-fairness trade-off than state-of-the-art schedulers for a wide variety of multi-application workloads.


asymmetric multicore scheduling operating systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alameldeen, A.R., Wood, D.A.: IPC considered harmful for multiprocessor workloads. IEEE Micro 26(4) (2006)Google Scholar
  2. 2.
    ARM: Benefits of the big.LITTLE Architecture (2012)Google Scholar
  3. 3.
    Becchi, M., Crowley, P.: Dynamic Thread Assignment on Heterogeneous Multiprocessor Architectures. In: Proc. of CF 2006, pp. 29–40 (2006)Google Scholar
  4. 4.
    Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three CPU schedulers in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42–51 (2007)CrossRefGoogle Scholar
  5. 5.
    Chitlur, N., et al.: QuickIA: Exploring heterogeneous architectures on real prototypes. In: Proc. of HPCA 2012, pp. 1–8 (2012)Google Scholar
  6. 6.
    Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-performance fairness substrate for multi-core memory systems. In: ASPLOS 2010 (2010)Google Scholar
  7. 7.
    Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram workloads. IEEE Micro 28(3) (2008)Google Scholar
  8. 8.
    Gabor, R., Weiss, S., Mendelson, A.: Fairness and throughput in switch on event multithreading. In: Proc. of MICRO 2006 (2006)Google Scholar
  9. 9.
    Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. IEEE Computer 41(7), 33–38 (2008)CrossRefGoogle Scholar
  10. 10.
    Joao, J.A., et al.: Utility-based acceleration of multithreaded applications on asymmetric CMPs. In: Proc. of ISCA 2013, pp. 154–165 (2013)Google Scholar
  11. 11.
    Koufaty, D., Reddy, D., Hahn, S.: Bias Scheduling in Heterogeneous Multi-core Architectures. In: Proc. of Eurosys 2010 (2010)Google Scholar
  12. 12.
    Kumar, R., et al.: Single-ISA Heterogeneous Multi-Core Architectures: the Potential for Processor Power Reduction. In: Proc. of MICRO, vol. 36 (2003)Google Scholar
  13. 13.
    Kumar, R., et al.: Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance. In: Proc. of ISCA 2004 (2004)Google Scholar
  14. 14.
    Kwon, Y., et al.: Virtualizing performance asymmetric multi-core systems. In: Proceedings of ISCA 2011 (2011)Google Scholar
  15. 15.
    Li, T., et al.: Operating system support for overlapping-ISA heterogeneous multi-core architectures. In: HPCA 2010, pp. 1–12 (2010)Google Scholar
  16. 16.
    Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip multiprocessors. In: Proc. of MICRO 2007 (2007)Google Scholar
  17. 17.
    Pousa, A., et al.: Theoretical study on the performance of an asymmetry-aware round-robin scheduler. TR - 5028A. Dept. of Computer Architecture. UCM (2012),
  18. 18.
    Saez, J.C., et al.: A Comprehensive Scheduler for Asymmetric Multicore Systems. In: Proc. of ACM Eurosys 2010 (2010)Google Scholar
  19. 19.
    Saez, J.C., et al.: Leveraging core specialization via OS scheduling to improve performance on asymmetric multicore systems. ACM TOCS 30(2) (April 2012)Google Scholar
  20. 20.
    Saez, J.C.: et al.: Delivering fairness and priority enforcement on asymmetric multicore systems via OS scheduling. In: Proc. of ACM SIGMETRICS (2013)Google Scholar
  21. 21.
    Shelepov, D., et al.: HASS: a Scheduler for Heterogeneous Multicore Systems. ACM SIGOPS OSR 43(2) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan Carlos Saez
    • 1
  • Adrian Pousa
    • 2
  • Fernando Castro
    • 1
  • Daniel Chaver
    • 1
  • Manuel Prieto-Matías
    • 1
  1. 1.Computer Science SchoolComplutense UniversityMadridSpain
  2. 2.Instituto de Investigacion en Informatica LIDI, UNLPArgentina

Personalised recommendations