Barron C, Neis P, Zipf A (2014) A comprehensive framework for intrinsic OpenStreetMap quality analysis. Trans GIS. doi:10.1111/tgis.12073
Google Scholar
Baulies X, Szejwach G (1997) Survey of needs, gaps and priorities on data for land use/land cover change research. Report presented at LUCC data requirements workshop. Barcelona, Spain, 11–14 Nov 1997
Google Scholar
Caetano M, Mata F, Freire S (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. Glob Dev Environ Earth Obs Space:459–467
Google Scholar
Cihlar J (2000) Land cover mapping of large areas from satellites: status and research priorities. Int J Remote Sens 21(6–7):1093–1114. doi:10.1080/014311600210092
CrossRef
Google Scholar
Clark ML, Aide TM (2011) Virtual interpretation of earth web-interface tool (VIEW-IT) for collecting land-use/land-cover reference data. Remote Sens 3(3):601–620. doi:10.3390/rs3030601
CrossRef
Google Scholar
Corine Land Cover Nomenclature (2011) Corine land cover nomenclature illustrated guide. In: Joint meeting Geoland2—EAGLE. Málaga, Spain, 23–24 June. http://sia.eionet.europa.eu/EAGLE/EAGLE_6thMeeting_g2_Malaga/04d_Nomenclature_CLC.pdf. Accessed 5 Jun 2014
Ellis E (2013) Land-use and land-cover change. In: The encyclopedia of earth. http://www.eoearth.org/view/article/51cbee4f7896bb431f696e92. Accessed 10 May 2014
Elwood S, Goodchild MF, Sui DZ (2012) Researching volunteered geographic information: spatial data, geographic research, and new social practice. Ann Assoc Am Geogr 102(3):571–590. doi:10.1080/00045608.2011.595657
CrossRef
Google Scholar
Estima J, Painho M (2013a) Exploratory analysis of OpenStreetMap for land use classification. In: Proceedings of the second ACM SIGSPATIAL international workshop on crowdsourced and volunteered geographic information—GEOCROWD ’13. ACM Press, pp 39–46. doi:10.1145/2534732.2534734
Estima J, Painho M (2013b) Flickr geotagged and publicly available photos: preliminary study of its adequacy for helping quality control of corine land cover. In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen HQ, Taniar D, Gervasi O (eds) ICCSA 2013: computational science and its applications. The 13th international conference on computational science and its Applications, Ho Chi Minh City, Vietnam, 24-27 June 2013 . Lecture notes in computer science, vol 7974. Springer, Heidelberg, pp 205–220. doi:10.1007/978-3-642-39649-6_15
Estima J, Painho M (2014) photo based volunteered geographic information initiatives: a comparative study of their suitability for helping quality control of corine land cover. Int J Agric Environ Inf Syst 5(3):75–92. doi:10.4018/ijaeis.2014070105
CrossRef
Google Scholar
European Environment Agency (2014) http://www.eea.europa.eu/data-and-maps/data/clc-2006-vector-data-version-2. Accessed 5 Jun 2014
Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719. doi:10.1080/13658816.2013.867495
CrossRef
Google Scholar
Flickr (2014) https://www.flickr.com/. Accessed 5 Jun 2014
Foody GM, Boyd DS (2013) Using volunteered data in land cover map validation: mapping West African forests. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1305–1312. doi:10.1109/JSTARS.2013.2250257
CrossRef
Google Scholar
Fritz S, McCallum I, Schill C, Perger C, Grillmayer R, Achard F, Obersteiner M (2009) Geo-Wiki.Org: The use of crowdsourcing to improve global land cover. Remote Sens 1(3):345–354. doi:10.3390/rs1030345
Fritz S, McCallum I, Schill C, Perger C, See L, Schepaschenko D, Obersteiner M (2012) Geo-Wiki: an online platform for improving global land cover. Environ Model Softw 31:110–123. doi:10.1016/j.envsoft.2011.11.015
CrossRef
Google Scholar
Geofabrik (2014) http://www.geofabrik.de/. Accessed 5 Jun 2014
GMapCreator (2014) http://www.bartlett.ucl.ac.uk/casa/latest/software/gmap_creator. Accessed 5 Jun 2014
Goodchild M (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221. doi:10.1007/s10708-007-9111-y
CrossRef
Google Scholar
Goodchild M (2008a) Assertion and authority: the science of user-generated geographic content. In: Proceedings of the Colloquium for Andrew U. Frank’s 60th birthday. Department of Geoinformation and Cartography, Vienna, Austria
Google Scholar
Goodchild M (2008b) Commentary: whither VGI? GeoJournal 72(3–4):239–244. doi:10.1007/s10708-008-9190-4
CrossRef
Google Scholar
Goodchild M, Glennon JA (2010) Crowdsourcing geographic information for disaster response: a research frontier. Int J Digit Earth 3(3):231–241. doi:10.1080/17538941003759255
CrossRef
Google Scholar
Google MyMaps (2014) https://www.google.com/maps/d/. Accessed 5 Jun 2014
Hagenauer J, Helbich M (2012) Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. Int J Geogr Inf Sci 26(6):963–982. doi:10.1080/13658816.2011.619501
CrossRef
Google Scholar
Hecht R, Kunze C, Hahmann S (2013) Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int J Geo-Inf 2(4):1066–1091. doi:10.3390/ijgi2041066
CrossRef
Google Scholar
Hollenstein L, Purves R (2010) Exploring place through user-generated content: using Flickr to describe city cores. J Spat Inf Sci 1(1):21–48. doi:10.5311/JOSIS.2010.1.3
Google Scholar
Holone H, Misund G, Holmstedt H (2007) Users are doing it for themselves: pedestrian navigation with user generated content. In: International conference on next generation mobile applications, services and technologies. IEEE, pp 91–99. doi: 10.1109/NGMAST.2007.4343406
Hudson-Smith A, Batty M, Crooks A, Milton R (2009) Mapping for the masses: accessing web 2.0 through crowdsourcing. Soc Sci Comput Rev 27(4):524–538. doi:10.1177/0894439309332299
CrossRef
Google Scholar
Jokar Arsanjani J, Helbich M, Bakillah M (2013a) Exploiting volunteered geographic information to ease land use mapping of an urban landscape. In: International archives of the photogrammetry, remote sensing and spatial information sciences. 29th Urban data management symposium, vol XL-4/W1. London, United Kingdom, 29–31 May 2013
Google Scholar
Jokar Arsanjani JJ, Helbich M, Bakillah M, Hagenauer J, Zipf A (2013b) Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27(12):2264–2278. doi:10.1080/13658816.2013.800871
CrossRef
Google Scholar
Jokar Arsanjani J, Vaz E (2015: in-press) An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int J Appl Earth Obs Geoinf
Google Scholar
Leung D, Newsam S (2010) Proximate sensing: Inferring what-is-where from georeferenced photo collections. In: Conference on computer vision and pattern recognition CVPR. IEEE, San Francisco, CA, pp 2955–2962, 13–18 June 2010. doi:10.1109/CVPR.2010.5540040
London Profiler (2014) http://128.40.111.250/casa/websites/profiler.asp. Accessed 5 Jun 2014
MapTube (2014) http://www.maptube.org/. Accessed 5 Jun 2014
Mooney P, Corcoran P, Winstanley A (2010) A study of data representation of natural features in OpenStreetMap. In Proceedings of the 6th GIScience international conference on geographic information science, vol 150. Zurich, Switzerland, 14–17 Sept 2010
Google Scholar
OpenStreetMap Map Features (2014) http://wiki.openstreetmap.org/wiki/Map_Features. Accessed 5 Jun 2014
Perger C, Fritz S, See L, Schill C, Van Der Velde M, Mccallum I, Obersteiner M (2012) A campaign to collect volunteered geographic information on land cover and human impact. In GI Forum 2012: Geovizualisation, Society and Learning. pp 83–91
Google Scholar
Turner AJ (2006) Introduction to neogeography. Sebastopol, CA
Google Scholar
Wikimapia (2014) http://wikimapia.org/. Accessed 5 Jun 2014
Zook M, Graham M, Shelton T, Gorman S (2010) Volunteered geographic information and crowdsourcing disaster relief: a case study of the Haitian Earthquake. World Med Health Policy 2(2):6–32. doi:10.2202/1948-4682.1069
CrossRef
Google Scholar