Skip to main content

Video-Based Self-positioning for Intelligent Transportation Systems Applications

  • Conference paper
  • 3572 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8887)

Abstract

Many urban areas face traffic congestion. Automatic traffic management systems and congestion pricing are getting prominence in recent research. An important stage in such systems is lane prediction and on-road self-positioning. We introduce a novel problem of vehicle self-positioning which involves predicting the number of lanes on the road and localizing the vehicle within those lanes, using the video captured by a dashboard camera. To overcome the disadvantages of most existing low-level vision-based techniques while tackling this complex problem, we formulate a model in which the video is a key observation. The model consists of the number of lanes and vehicle position in those lanes as parameters, hence allowing the use of high-level semantic knowledge. Under this formulation, we employ a lane-width-based model and a maximum-likelihood-estimator making the method tolerant to slight viewing angle variation. The overall approach is tested on real-world videos and is found to be effective.

Keywords

  • Random Forest
  • Intelligent Transportation System
  • Intelligent Transport System
  • Congestion Price
  • Lane Marker

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zheng, H., Chiu, Y.C., Mirchandani, P.B.: On the system optimum dynamic traffic assignment and earliest arrival flow problems. Transportation Science (2013)

    Google Scholar 

  2. Angel, A., Hickman, M., Mirchandani, P., Chandnani, D.: Methods of analyzing traffic imagery collected from aerial platforms. IEEE Transactions on Intelligent Transportation Systems 4, 99–107 (2003)

    CrossRef  Google Scholar 

  3. Kammel, S., Pitzer, B.: Lidar-based lane marker detection and mapping. In: 2008 IEEE Intelligent Vehicles Symposium. IEEE (2008)

    Google Scholar 

  4. Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in urban road networks with vision and lidar. Autonomous Robots 26, 103–122 (2009)

    CrossRef  Google Scholar 

  5. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Machine Vision and Applications, 1–19 (2012)

    Google Scholar 

  6. Nieto, M., Laborda, J.A., Salgado, L.: Road environment modeling using robust perspective analysis and recursive bayesian segmentation. Machine Vision and Applications 22, 927–945 (2011)

    CrossRef  Google Scholar 

  7. Wu, S.J., Chiang, H.H., Perng, J.W., Chen, C.J., Wu, B.F., Lee, T.T.: The heterogeneous systems integration design and implementation for lane keeping on a vehicle. IEEE Transactions on Intelligent Transportation Systems 9, 246–263 (2008)

    CrossRef  Google Scholar 

  8. Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., Magnor, M.: A fast and robust approach to lane marking detection and lane tracking. In: IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2008, pp. 57–60. IEEE (2008)

    Google Scholar 

  9. Cheng, H.Y., Jeng, B.S., Tseng, P.T., Fan, K.C.: Lane detection with moving vehicles in the traffic scenes. IEEE Transactions on Intelligent Transportation Systems 7, 571–582 (2006)

    CrossRef  Google Scholar 

  10. Labayrade, R., Douret, J., Laneurit, J., Chapuis, R.: A reliable and robust lane detection system based on the parallel use of three algorithms for driving safety assistance. IEICE Transactions on Information and Systems 89, 2092–2100 (2006)

    CrossRef  Google Scholar 

  11. Kong, H., Audibert, J.Y., Ponce, J.: Vanishing point detection for road detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 96–103. IEEE (2009)

    Google Scholar 

  12. Alon, Y., Ferencz, A., Shashua, A.: Off-road path following using region classification and geometric projection constraints. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 689–696. IEEE (2006)

    Google Scholar 

  13. Zhang, G., Zheng, N., Cui, C., Yan, Y., Yuan, Z.: An efficient road detection method in noisy urban environment. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 556–561. IEEE (2009)

    Google Scholar 

  14. Sawano, H., Okada, M.: A road extraction method by an active contour model with inertia and differential features. IEICE Transactions on Information and Systems 89, 2257–2267 (2006)

    CrossRef  Google Scholar 

  15. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image and Vision Computing 22 (2004)

    Google Scholar 

  16. Nieto, M., Salgado, L., Jaureguizar, F.: Robust road modeling based on a hierarchical bipartite graph. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 61–66. IEEE (2008)

    Google Scholar 

  17. Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S.: Finding multiple lanes in urban road networks with vision and lidar. Autonomous Robots 26, 103–122 (2009)

    CrossRef  Google Scholar 

  18. Kuhnl, T., Kummert, F., Fritsch, J.: Visual ego-vehicle lane assignment using spatial ray features. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 1101–1106. IEEE (2013)

    Google Scholar 

  19. Samadzadegan, F., Sarafraz, A., Tabibi, M.: Automatic lane detection in image sequences for vision-based navigation purposes. In: Proceedings of the ISPRS Commission V Symposium’Image Engineering and Vision Metrology (2006)

    Google Scholar 

  20. McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Transactions on Intelligent Transportation Systems 7 (2006)

    Google Scholar 

  21. Collado, J.M., Hilario, C., de la Escalera, A., Armingol, J.M.: Adaptative road lanes detection and classification. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1151–1162. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  22. Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on geometrical model and gabor filter. In: 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 59–64. IEEE (2010)

    Google Scholar 

  23. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)

    CrossRef  Google Scholar 

  24. Nieto, M., Laborda, J.A., Salgado, L.: Road environment modeling using robust perspective analysis and recursive bayesian segmentation. In: Machine Vision and Applications, vol. 22 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chandakkar, P.S., Venkatesan, R., Li, B. (2014). Video-Based Self-positioning for Intelligent Transportation Systems Applications. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_69

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)