Skip to main content

Coupled Dictionary Learning for Automatic Multi-Label Brain Tumor Segmentation in Flair MRI images

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8887)

Abstract

Brain tumor segmentation and labeling is a challenging task in medical imaging. In this paper, a novel patch based dictionary learning algorithm for automatic multi-label brain tumor segmentation is proposed. Based on image reconstruction, we present coupled dictionaries, one dictionary of grayscale brain tumor image patches and one dictionary of tumor labels, which can then be used for automatic multi-label brain tumor segmentation of a test image data. The dictionaries are learned from training images of BraTS-MICCAI and the SPL/NSG brain tumor databases. The label dictionary is proposed to select foreground and background labels for automatic graph-cut segmentation. For quantitative evaluation, five different metric scores are computed using the online evaluation tool provided by the BraTS organizers. Experimental results demonstrate that the proposed approach achieves accurate results and outperforms most of the state-of-the-art methods cited in BraTS-MICCAI challenge.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14249-4_46
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14249-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: Segmentation, Feature Extraction, Multiclass Brain Tumor Classification. Journal of Digital Imaging 26, 1141–1150 (2013)

    CrossRef  Google Scholar 

  2. Jiang, S., Wu, Y., Huang, M., Yang, W., Chen, W., Feng, Q.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. CMIG 37(7), 512–521 (2013)

    Google Scholar 

  3. Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Automatic Brain and Tumor Segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 372–379. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  4. Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: Glioma Image Segmentation and Registration. IEEE Trans. Med. Imag. 31(10), 1941–1954 (2012)

    CrossRef  Google Scholar 

  5. Weiss, N., Rueckert, D., Rao, A.: Multiple Sclerosis Lesion Segmentation Using Dictionary Learning and Sparse Coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  6. Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Cao, T., Jojic, V., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Robust multimodal dictionary learning. MICCAI 16(1), 259–266 (2013)

    Google Scholar 

  8. Reza, S., Iftekharuddin, K.M.: Multi-class Abnormal Brain Tissue Segmentation Using Texture Features. In: Proceedings of BraTS-MICCAI, pp. 38–42 (2013)

    Google Scholar 

  9. Tustison, N., Wintermark, M., Durst, C., Avants, B.: ANTs and Arboles. In: Proceedings of BraTS-MICCAI, pp. 47–50 (2013)

    Google Scholar 

  10. Zhao, L., Sarikaya, D., Corso, J.J.: Automatic Brain Tumor Segmentation with MRF on Supervoxels. In: Proceedings of BraTS-MICCAI, pp. 51–54 (2013)

    Google Scholar 

  11. Festa, J., Pereira, S., Mariz, J.A., Sousa, N., Silva, C.A.: Automatic Brain Tumor Segmentation of Multi-Sequence MR Images Using Random Decision Forests. In: Proceedings of BraTS-MICCAI, pp. 23–26 (2013)

    Google Scholar 

  12. Thiagarajan, J.J., Ramamurthy, K.N., Rajan, D., Spanias, A.: Kernel Sparse Models for Automatic Tumor Segmentation. IJAIT 12, 1–12 (2013)

    Google Scholar 

  13. Zhao, L., Wu, W., Corso, J.J.: Semi-Automatic Brain Tumor Segmentation By Constrained MRFs using Structural Trajectories. MICCAI 16(pt 3), 567–575 (2013)

    Google Scholar 

  14. Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)

    CrossRef  Google Scholar 

  15. Cordier, N., Menze, B., Delingette, H., Ayache, N.: Patch-based Segmentation of Brain Tissues. In: Proceedings of BraTS-MICCAI, pp. 6–17 (2013)

    Google Scholar 

  16. Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A Hybrid Model for Multimodal Brain Tumor Segmentation. In: Proceedings of BraTS-MICCAI, pp. 31–37 (2013)

    Google Scholar 

  17. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    CrossRef  Google Scholar 

  18. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization with Label Costs. In: CVPR, pp. 2173–2180 (2010)

    Google Scholar 

  19. Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated Segmentation of MRI of Brain Tumors. Radiology 218(2), 586–591 (2001)

    CrossRef  Google Scholar 

  20. Brain Tumor Database (BraTS-MICCAI), http://hal.inria.fr/hal-00935640

  21. BraTS-MICCAI Website, http://martinos.org/qtim/miccai2013/results.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Shaikhli, S.D.S., Yang, M.Y., Rosenhahn, B. (2014). Coupled Dictionary Learning for Automatic Multi-Label Brain Tumor Segmentation in Flair MRI images. In: , et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)