Adaptive Visualization of Social Media Data for Policy Modeling
- 2.9k Downloads
Abstract
The visual analysis of social media data emerged a huge number of interactive visual representations that use different characteristics of the data to enable the process of information acquisition. The social data are used in the domain of policy modeling to gather information about citizens’ demands, opinions, and requirements and help to decide about political policies. Although existing systems already provide a huge number of visual analysis tools, the search and exploration paradigm is not really clear. Furthermore, the systems commonly do not provide any kind of human centered adaptation for the different stakeholders involved in the policy making process. In this paper, we introduce a novel approach that investigates the exploration and search paradigm from two different perspectives and enables a visual adaptation to support the exploration and analysis process.
Keywords
Policy Modeling Information Visualization Visual Variable Social Media Data Search ParadigmPreview
Unable to display preview. Download preview PDF.
References
- 1.Katal, A., Wazid, M., Goudar, R.: Big data: Issues, challenges, tools and good practices. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409 (2013)Google Scholar
- 2.Nazemi, K., Steiger, M., Burkhardt, D., Kohlhammer, J.: Information visualization and policy modeling. In: Sonntagbauer, P., Nazemi, K., Sonntagbauer, S., Prister, G., Burkhardt, D. (eds.) Handbook of Research on Advanced ICT Integration for Governance and Policy, IGI Global (to appear, 2014)Google Scholar
- 3.Kohlhammer, J., Nazemi, K., Ruppert, T., Burkhardt, D.: Toward visualization in policy modeling. IEEE Computer Graphics and Applications 32, 84–89 (2012)CrossRefGoogle Scholar
- 4.Kohlhammer, J.: Knowledge Representation for Decision-Centered Visualization. PhD thesis, Technische Universität Darmstadt (2005)Google Scholar
- 5.Shin, H., Park, G., Han, J.: Tablorer - an interactive tree visualization system for tablet pcs. In: Proceedings of the 13th Eurographics / IEEE - VGTC Conference on Visualization, EuroVis 2011, pp. 1131–1140. Eurographics Association, Aire-la-Ville (2011)Google Scholar
- 6.Stein, K., Wegener, R., Schlieder, C.: Pixel-oriented visualization of change in social networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 233–240 (2010)Google Scholar
- 7.Gretarsson, B., O’Donovan, J., Bostandjiev, S., Hall, C., Höllererk, T.: Smallworlds: visualizing social recommendations. In: Proceedings of the 12th Eurographics / IEEE - VGTC conference on Visualization, EuroVis 2010, pp. 833–842. Eurographics Association, Aire-la-Ville (2010)Google Scholar
- 8.Crow, J., Whitworth, E., Wongsa, A., Francisco-Revilla, L., Pendyala, S.: Timeline interactive multimedia experience (time): on location access to aggregate event information. In: Proceedings of the 10th Annual Joint Conference on Digital libraries, JCDL 2010, pp. 201–204. ACM, New York (2010)Google Scholar
- 9.Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Matering the Information Age Solving Problems with Visual Analytics. Eurographics Association (2010)Google Scholar
- 10.Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think, 1st edn. Morgan Kaufmann (1999)Google Scholar
- 11.Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)Google Scholar
- 12.Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: VL, pp. 336–343 (1996)Google Scholar
- 13.Nazemi, K., Christ, O.: Verbalization in search: Implication for the need of adaptive visualizations. In: Advances in Affective and Pleasurable Design. Advances in Human Factors and Ergonomics Series. Taylor & Francis (2012)Google Scholar
- 14.van Ham, F., Pere, A.: Search, show context, expand on demand: Supporting large graph exploration with degree-of-interest. IEEE Trans. Vis. Comput. Graph. 15, 953–960 (2009)CrossRefGoogle Scholar
- 15.Bouchard, G., Clinchant, S., Darling, W.: Hot topic sensing, text analysis and summarization. In: Sonntagbauer, P., Nazemi, K., Sonntagbauer, S., Prister, G., Burkhardt, D. (eds.) Handbook of Research on Advanced ICT Integration for Governance and Policy, IGI Global (to appear, 2014)Google Scholar
- 16.Rumm, N., Ortner, B., Löw, H.: Approaches to integrate various technologies for policy modeling. In: Sonntagbauer, P., Nazemi, K., Sonntagbauer, S., Prister, G., Burkhardt, D. (eds.) Handbook of Research on Advanced ICT Integration for Governance and Policy, IGI Global (to appear, 2014)Google Scholar
- 17.Wang, X., Dou, W., Ribarsky, W., Skau, D., Zhou, M.X.: Leadline: Interactive visual analysis of text data through event identification and exploration. In: Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), VAST 2012, pp. 93–102. IEEE Computer Society, Washington, DC (2012)Google Scholar
- 18.MacEachren, A.M., Jaiswal, A., Robinson, A.C., Pezanowski, S., Savelyev, A., Mitra, P., Zhang, X., Blanford, J.: Senseplace2: Geotwitter analytics support for situation awareness. In: Proceedings of IEEE Conference on VisualAnalytics Science and Technology (VAST 2011), pp. 181–190. IEEE (2011)Google Scholar
- 19.Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun, J., Lin, C.Y.: Himap: Adaptive visualization of large-scale online social networks. In: EEE Pacific Visualization Symposium, 2009. PacificVis 2009, pp. 41–48 (2009)Google Scholar
- 20.Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 21.Dork, M., Gruen, D., Williamson, C., Carpendale, S.: A visual backchannel for large-scale events. IEEE Transactions on Visualization and Computer Graphics 16, 1129–1138 (2010)CrossRefGoogle Scholar
- 22.Macintosh, A.: Characterizing e-participation in policy-making. In: Proceedings of the Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004) - Track 5 - Volume 5, IEEE Computer Society Press, Washington, DC (2004)Google Scholar
- 23.Hearst, M.A.: Search User Interfaces. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 24.Marchionini, G.: Information Seeking in Electronic Environments. Cambridge University Press (1995)Google Scholar
- 25.Sonntagbauer, P., Nazemi, K., Sonntagbauer, S., Prister, G., Burkhardt, D. (eds.): Handbook of Research on Advanced ICT Integration for Governance and Policy. IGI Global (to appear, 2014)Google Scholar
- 26.Nazemi, K., Kohlhammer, J.: Visual variables in adaptive visualizations. In: Extended Proceedings of UMAP 2013. CEUR Workshop Proceedings, vol. 997 (2013) ISSN 1613-0073Google Scholar
- 27.Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., Chen, M., Gotz, D. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 28.Nazemi, K., Retz, W., Kohlhammer, J., Kuijper, A.: User similarity and deviation analysis for adaptive visualizations. In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 64–75. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 29.Burkhardt, D., Nazemi, K., Stab, C., Steiger, M., Kuijper, A., Kohlhammer, J.: Visual statistics cockpits for information gathering in the policy-making process. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 86–97. Springer, Heidelberg (2013)CrossRefGoogle Scholar