Skip to main content

3D Deformable Spatial Pyramid for Dense 3D Motion Flow of Deformable Object

  • Conference paper
Book cover Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8887))

Included in the following conference series:

Abstract

This paper presents an algorithm for finding the dense motion flow of deformable objects from RGB-D images. We introduce a 3D deformable spatial pyramid model by reformulating the previous 2D deformable spatial pyramid model [1] with depth information. Our algorithm recasts the problem of estimating 3D motion of deformable objects as a problem of estimating 2D motions of a set of grid cells where each pixel contains a viewpoint-invariant feature vector. These grid cells are controlled by a pyramid graph model. Our approach significantly reduces the computational cost through a 2D correspondence search and efficiently handles even large deformations with the pyramid graph model. As demonstrated in the experimental results, the proposed algorithm shows robustness in various deformation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR (2013)

    Google Scholar 

  2. Li, K., Dai, Q., Xu, W.: Markerless shape and motion capture from multiview video sequences. IEEE Trans. CSVT 21, 320–334 (2011)

    Google Scholar 

  3. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3d traffic scene understanding from movable platforms. IEEE Trans. PAMI (2014)

    Google Scholar 

  4. Lenz, P., Ziegler, J., Geiger, A., Roser, M.: Sparse scene flow segmentation for moving object detection in urban environments. In: Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  5. Herbst, E., Ren, X., Fox, D.: Rgb-d flow: Dense 3-d motion estimation using color and depth. In: ICRA (2013)

    Google Scholar 

  6. Quiroga, J., Devernay, F., Crowley, J.L.: Local/Global Scene Flow Estimation. In: ICIP (2013)

    Google Scholar 

  7. Hornacek, M., Fitzgibbon, A., Rother, C.: Sphereflow: 6 dof scene flow from rgb-d pairs. In: CVPR (2013)

    Google Scholar 

  8. Shaji, A., Varol, A., Torresani, L., Fua, P.: Simultaneous point matching and 3d deformable surface reconstruction. In: CVPR (2010)

    Google Scholar 

  9. Schulman, J., Lee, A., Ho, J., Abbeel, P.: Tracking deformable objects with point clouds. In: ICRA (2013)

    Google Scholar 

  10. Gossow, D., Weikersdorfer, D., Beetz, M.: Distinctive texture features from perspective-invariant keypoints. In: ICPR (2012)

    Google Scholar 

  11. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proceedings of Conference on Neural Information Processing Systems (NIPS). MIT Press, Cambridge (2005)

    Google Scholar 

  12. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  13. Li, S.Z., Singh, S.: Markov random field modeling in image analysis, vol. 26. Springer (2009)

    Google Scholar 

  14. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999 (1999)

    Google Scholar 

  15. Weiss, Y.: Correctness of local probability propagation in graphical models with loops. Neural. Comput. 12, 1–41 (2000)

    Article  MATH  Google Scholar 

  16. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. International Journal of Computer Vision 70, 41–54 (2006)

    Article  Google Scholar 

  17. Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. PAMI 33, 978–994 (2011)

    Article  Google Scholar 

  18. Liu, L., Low, K.L., Lin, W.Y.: Dense image correspondence under large appearance variations. In: ICIP, pp. 770–774 (2013)

    Google Scholar 

  19. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hur, J., Lim, H., Ahn, S.C. (2014). 3D Deformable Spatial Pyramid for Dense 3D Motion Flow of Deformable Object. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8887. Springer, Cham. https://doi.org/10.1007/978-3-319-14249-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14249-4_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14248-7

  • Online ISBN: 978-3-319-14249-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics