Advertisement

Structure-Oriented Techniques for XML Document Partitioning

  • Gianni Costa
  • Riccardo Ortale
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 586)

Abstract

Focusing on only one type of structural component in the process of clustering XML documents may produce clusters with a certain extent of inner structural inhomogeneity, due either to uncaught differences in the overall logical structures of the available XML documents or to inappropriate choices of the targeted structural component. To overcome these limitations, two approaches to clustering XML documents by multiple heterogeneous structures are proposed. An approach looks at the simultaneous occurrences of such structures across the individual XML documents. The other approach instead combines multiple clusterings of the XML documents, separately performed with respect to the individual types of structures in isolation. A comparative evaluation over both real and synthetic XML data proved that the effectiveness of the devised approaches is at least on a par and even superior with respect to the effectiveness of state-of-the-art competitors. Additionally, the empirical evidence also reveals that the proposed approaches outperform such competitors in terms of time efficiency.

Keywords

Data mining XML clustering XML transactional representation Ensemble XML clustering 

References

  1. 1.
    S. Abiteboul, P. Buneman, D. Suciu, Data on the Web: From Relations to Semistructured Data and XML (Morgan Kaufmann, 2000)Google Scholar
  2. 2.
    E. Wilde, R. Glushko, Xml fever. Commun. ACM 51(7), 40–46 (2008)CrossRefGoogle Scholar
  3. 3.
    C.C. Aggarwal et al., XProJ: a framework for projected structural clustering of XML documents, in Proceedings of SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2007), pp. 46–55Google Scholar
  4. 4.
    R.A. Baeza-Yates, N. Fuhr, Y. Andamaarek, Special issue on XML retrieval. ACM Trans. Inf. Syst. 24(4) (2006)Google Scholar
  5. 5.
    L. Denoyer, P. Gallinari, Overview of the INEX 2008 XML mining track, in Advances in Focused Retrieval (2009), pp. 401–411Google Scholar
  6. 6.
    T. Asai et al., Efficient substructure discovery from large semi-structured data, in Proceedings of Siam Conference on Data Mining (SDM) (2002), pp. 158–174Google Scholar
  7. 7.
    K. Wang, H. Liu, Discovering typical structures of documents: a road map approach, in Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (1998), pp. 146–154Google Scholar
  8. 8.
    A. Algergawy, M. Mesiti, R. Nayak, G. Saake, XML data clustering: an overview. ACM Comput. Surv. 43(4), 25:1–25:41 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Denoyer, P. Gallinari, Report on the XML mining track at INEX 2007: categorization and clustering of XML documents. ACM SIGIR Forum 42(1), 22–28 (2008)CrossRefGoogle Scholar
  10. 10.
    G. Demartini et al., Report on the XML mining track at INEX 2008: categorization and clustering of XML documents. ACM SIGIR Forum 43(1), 17–36 (2009)CrossRefGoogle Scholar
  11. 11.
    R. Nayak et al., Overview of the INEX 2009 XML mining track: clustering and classification of XML documents, in Focused Retrieval and Evaluation (2010), pp. 366–378Google Scholar
  12. 12.
    M.N. Garofalakis et al., XTRACT: a system for extracting document type descriptors from XML documents, in Proceedings of International Conference on Management of Data (SIGMOD) (2000), pp. 165–176Google Scholar
  13. 13.
    S. Nestorov, S. Abiteboul, R. Motwani, Extracting schema from semistructured data, in Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD) (1998), pp. 295–306Google Scholar
  14. 14.
    S. Bergamaschi, S. Castano, M. Vincini, Semantic integration of semistructured and structured data sources. SIGMOD Record 28(1), 54–59 (1999)CrossRefGoogle Scholar
  15. 15.
    G. Costa, G. Manco, R. Ortale, A. Tagarelli, A tree-based approach to clustering XML documents by structure, in Proceedings of International Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD) (2004), pp. 137–148Google Scholar
  16. 16.
    S. Joshi, N. Agrawal, R. Krishnapuram, S. Negi, A bag of paths model for measuring structural similarity in web documents, in ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2003), pp. 577–582Google Scholar
  17. 17.
    G. Costa, R. Ortale, E. Ritacco, Effective XML classification using content and structural information via rule learning, in IEEE International Conference on Tools with Artificial Intelligence (2011), pp. 102–109Google Scholar
  18. 18.
    G. Costa, R. Ortale, On effective XML clustering by path commonality: an efficient and scalable algorithm, in IEEE International Conference on Tools with Artificial Intelligence (2012), pp. 389–396Google Scholar
  19. 19.
    G. Costa, R. Ortale, E. Ritacco, X-class: associative classification of XML documents by structure. ACM Trans. Inf. Syst. 31(1), 3:1–3:40 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Dalamagas, T. Cheng, K.-J. Winkel, T.K. Sellis, A methodology for clustering XML documents by structure. Inf. Syst. 31(3), 187–228 (2006)CrossRefGoogle Scholar
  21. 21.
    F.D. Francesca, G. Gordano, R. Ortale, A. Tagarelli, Distance-based clustering of XML documents, in International ECML/PKDD Workshop on Mining Graphs, Trees and Sequences (2003), pp. 75–78Google Scholar
  22. 22.
    M.J. Zaki, C.C. Aggarwal, Xrules: an effective structural classifier for XML data, in Proceedings of SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), (2003) pp. 316–325Google Scholar
  23. 23.
    W. Lian, D.W.-L. Cheung, N. Mamoulis, S.-M. Yiu, An efficient and scalable algorithm for clustering XML documents by structure. IEEE Trans. Knowl. Data Eng. 16(1), 82–96 (2004)CrossRefGoogle Scholar
  24. 24.
    G. Costa, G. Manco, R. Ortale, E. Ritacco, Hierarchical clustering of XML documents focused on structural components. Data Knowl. Eng. 84, 26–46 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Costa, R. Ortale, Structure-oriented clustering of XML documents: a transactional approach, in IEEE International Conference on Intelligent Systems (2012), pp. 188–193Google Scholar
  26. 26.
    M.J. Zaki, Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Trans. Knowl. Data Eng. 17(8), 1021–1035 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Cesario, G. Manco, R. Ortale, Top-down parameter-free clustering of high-dimensional categorical data. IEEE Trans. Knowl. Data Eng. 19(12), 1607–1624 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Li, M. Ogihara, S. Ma, On combining multiple clusterings: an overview and a new perspective. Appl. Intell. 33(2), 207–219 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval (Addison-Wesley, Boston, 1999)Google Scholar
  30. 30.
    G. Costa, G. Manco, R. Ortale, A hierarchical model-based approach to co-clustering high-dimensional data, in Proceedings of ACM Symposium on Applied Computing (2008), pp. 886–890Google Scholar
  31. 31.
    G. Costa, G. Manco, R. Ortale, An incremental clustering scheme for data de-duplication. Data Min. Knowl. Disc. 20(1), 152–187 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ICAR-CNRRendeItaly

Personalised recommendations