A Feature-Similarity Model for Product Line Engineering

  • Hermann Kaindl
  • Mike Mannion
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8919)

Abstract

Search, retrieval and comparison of products in a product line are common tasks during product line evolution. Feature modeling approaches do not easily support these tasks. This vision paper sets out a proposal for a feature-similarity model in which similarity metrics as used for example in case-based reasoning (CBR) are integrated with feature models. We describe potential applications for Product Line Scoping, Domain Engineering and Application Engineering.

Keywords

Product line engineering feature-based representation case-based reasoning similarity metric feature-similarity model 

References

  1. 1.
    A Framework for Software Product Line Practice, Version 5.0, http://www.sei.cmu.edu/productlines/frame_report (last accessed October 6, 2014)
  2. 2.
    Cover, T.M., Hart, P.E.: Nearest Neighbour Pattern Classification. IEEE Trans. on Information Theory 13, 21–27 (1967)CrossRefMATHGoogle Scholar
  3. 3.
    Benavides, D., Felfernig, A., Galindo, J.A., Reinfrank, F.: Automated Analysis in Feature Modelling and Product Configuration. In: Favaro, J., Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925, pp. 160–175. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bildhauer, D., Horn, T., Ebert, J.: Similarity-driven software reuse. In: Proceedings of CVSM 2009, pp. 31–36. IEEE (2010)Google Scholar
  5. 5.
    Kaindl, H., Svetinovic, D.: On confusion between requirements and their representations. Requirements Engineering 15, 307–311 (2010)CrossRefGoogle Scholar
  6. 6.
    Kaindl, H., Smialek, M., Nowakowski, W.: Case-based Reuse with Partial Requirements Specifications. In: 18th IEEE International Requirements Engineering Conference (RE 2010), pp. 399–400 (2010)Google Scholar
  7. 7.
    Kaindl, H., Falb, J., Melbinger, S., Bruckmayer, T.: An Approach to Method-Tool Coupling for Software Development. In: Fifth International Conference on Software Engineering Advances (ICSEA 2010), pp. 101–106. IEEE (2010)Google Scholar
  8. 8.
    Botelho, L., Fernández, A., Fires, B., Klusch, M., Pereira, L., Santos, T., Pais, P., Vasirani, M.: Service Discovery. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, ch. 10, pp. 205–234. Birkhäuser, Basel (2008)Google Scholar
  9. 9.
    Czyszczoń, A., Zgrzywa, A.: The MapReduce Approach to Web Service Retrieval. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 517–526. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Klusch, M.: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, ch. 4, pp. 59–104. Birkhäuser, Basel (2008)Google Scholar
  11. 11.
    Becker, J., Oliver Müller, O., Woditsch, M.: An Ontology-Based Natural Language Service Discovery Engine – Design and Experimental Evaluation. In: 18th European Conference on Information Systems (ECIS 2010) (2010)Google Scholar
  12. 12.
    Itzik, N., Reinhartz-Berger, I.: Generating Feature Models from Requirements: Structural vs. Functional Perspectives. In: REVE 2014. SPLC Proceedings – Volume 2: Workshops, Demonstrations, and Tools, pp. 44–51 (2014)Google Scholar
  13. 13.
    Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically composable feature models from natural language requirements. In: 13th International Software Product Line Conference (SPLC 2009), pp. 211–220 (2009)Google Scholar
  14. 14.
    Mannion, M., Kaindl, H.: Using Similarity Metrics for Mining Variability from Software Metrics. In: REVE 2014. SPLC Proceedings – Volume 2: Workshops, Demonstrations, and Tools, pp. 32–35 (2014)Google Scholar
  15. 15.
    John, I., Eisenbarth, M.: A Decade of Scoping: A Survey. In: 13th International Software Product Line Conference (SPLC 2009), pp. 31–40 (2009)Google Scholar
  16. 16.
    McGill, A.L.: Alignable and nonalignable differences in causal explanations. Memory Cognition 30(3), 456–468 (2002)CrossRefGoogle Scholar
  17. 17.
    Harman, M., Jia, Y., Krinke, J., Langdon, W., Petke, J., Zhang, Y.: Keynote: Search based software engineering for software product line engineering: a survey and directions for future work. In: 18th International Software Product Line Conference (SPLC 2014), pp. 5–18 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hermann Kaindl
    • 1
  • Mike Mannion
    • 2
  1. 1.Institute of Computer TechnologyVienna University of TechnologyViennaAustria
  2. 2.Executive GroupGlasgow Caledonian UniversityGlasgowUK

Personalised recommendations