Software Development Support for Shared Sensing Infrastructures: A Generative and Dynamic Approach

  • Cyril Cecchinel
  • Sébastien Mosser
  • Philippe Collet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8919)

Abstract

Sensors networks are the backbone of large sensing infrastructures such as Smart Cities or Smart Buildings. Classical approaches suffer from several limitations hampering developers’ work (e.g., lack of sensor sharing, lack of dynamicity in data collection policies, need to dig inside big data sets, absence of reuse between implementation platforms). This paper presents a tooled approach that tackles these issues. It couples (i) an abstract model of developers’ requirements in a given infrastructure to (ii) timed automata and code generation techniques, to support the efficient deployment of reusable data collection policies on different infrastructures. The approach has been validated on several real-world scenarios and is currently experimented on an academic campus.

Keywords

Sensor Network Software Composition Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, C.C. (ed.): Managing and Mining Sensor Data. Springer (2013)Google Scholar
  2. 2.
    Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines - Concepts and Implementation. Springer (2013)Google Scholar
  3. 3.
    Buratti, C., Conti, A., Dardari, D., Verdone, R.: An overview on wireless sensor networks technology and evolution. Sensors 9(9), 6869–6896 (2009), http://www.mdpi.com/1424-8220/9/9/6869 CrossRefGoogle Scholar
  4. 4.
    Cecchinel, C., Jimenez, M., Mosser, S., Riveill, M.: An Architecture to Support the Collection of Big Data in the Internet of Things. In: International Workshop on Ubiquitous Mobile Cloud (UMC 2014, Co-located with SERVICES 2014), pp. 1–8. IEEE, Anchorage (2014)Google Scholar
  5. 5.
    Chapin, P.C., Skalka, C., Smith, S.F., Watson, M.: Scalaness/nesT: Type Specialized Staged Programming for Sensor Networks. In: Järvi, J., Kästner, C. (eds.) GPCE, pp. 135–144. ACM (2013)Google Scholar
  6. 6.
    DeAntoni, J., Mallet, F.: TimeSquare: Treat your Models with Logical Time. In: Furia, C.A., Nanz, S. (eds.) TOOLS Europe 2012. LNCS, vol. 7304, pp. 34–41. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Diao, Y., Ganesan, D., Mathur, G., Shenoy, P.J.: Rethinking data management for storage-centric sensor networks. In: Third Biennial Conference on Innovative Data Systems Research, CIDR 2007, Asilomar, CA, USA, January 7-10, pp. 22–31 (2007)Google Scholar
  8. 8.
    Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A lightweight and flexible operating system for tiny networked sensors. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 455–462 (November 2004)Google Scholar
  9. 9.
    Fambon, O., Fleury, E., Harter, G., Pissard-Gibollet, R., Saint-Marcel, F.: Fit iot-lab tutorial: Hands-on practice with a very large scale testbed tool for the internet of things. In: 10èmes Journées Francophones Mobilité et Ubiquité (UbiMob), pp. 1–5 (June 2014)Google Scholar
  10. 10.
    Fleurey, F., Morin, B., Solberg, A.: A Model-Driven Approach to Develop Adaptive Firmwares. In: Giese, H., Cheng, B.H.C. (eds.) SEAMS, pp. 168–177. ACM (2011)Google Scholar
  11. 11.
    Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., Jezequel, J.M.: A Dynamic Component Model for Cyber Physical Systems. In: Proceedings of the 15th ACM SIGSOFT Symposium on Component Based Software Engineering, CBSE 2012, pp. 135–144. ACM, New York (2012)Google Scholar
  12. 12.
    Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.: A Survey on Facilities for Experimental Internet of Things Research. IEEE Communications Magazine 49(11), 58–67 (2011), http://hal.inria.fr/inria-00630092 CrossRefGoogle Scholar
  13. 13.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Generation Comp. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  14. 14.
    Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D.: Tinyos: An operating system for sensor networks. In: Ambient Intelligence. Springer (2004)Google Scholar
  15. 15.
    LogMeIn: Xively (May 2014), http://xively.com/
  16. 16.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005), http://doi.acm.org/10.1145/1061318.1061322 CrossRefGoogle Scholar
  17. 17.
    Mahmood, A., Ke, S., Khatoon, S., Xiao, M.: Data mining techniques for wireless sensor networks: A survey. IJDSN 2013 (2013)Google Scholar
  18. 18.
    Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@run.time to Support Dynamic Adaptation. Computer 42(10), 44–51 (2009)CrossRefGoogle Scholar
  19. 19.
    Sanchez, L., Galache, J., Gutierrez, V., Hernandez, J., Bernat, J., Gluhak, A., Garcia, T.: Smartsantander: The meeting point between future internet research and experimentation and the smart cities. In: Future Network Mobile Summit (FutureNetw), pp. 1–8 (June 2011)Google Scholar
  20. 20.
    Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. J. ACM 28(3), 423–434 (1981)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Tonneau, A.S., Mitton, N., Vandaele, J.: A Survey on (mobile) wireless sensor network experimentation testbeds. In: DCOSS - IEEE International Conference on Distributed Computing in Sensor Systems, Marina Del Rey, California, États-Unis (May 2014), http://hal.inria.fr/hal-00988776
  22. 22.
    Tsiftes, N., Dunkels, A.: A database in every sensor. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys 2011, pp. 316–332. ACM, New York (2011), http://doi.acm.org/10.1145/2070942.2070974 Google Scholar
  23. 23.
    Völgyesi, P., Maróti, M., Dóra, S., Osses, E., Lédeczi, Á.: Software Composition and Verification for Sensor Networks. Sci. Comput. Program. 56(1-2), 191–210 (2005)CrossRefGoogle Scholar
  24. 24.
    Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor networks. SIGMOD Rec. 31(3), 9–18 (2002), http://doi.acm.org/10.1145/601858.601861 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cyril Cecchinel
    • 1
    • 2
  • Sébastien Mosser
    • 1
    • 2
  • Philippe Collet
    • 1
    • 2
  1. 1.I3S, UMR 7271Université Nice Sophia AntipolisSophia AntipolisFrance
  2. 2.CNRS, I3S, UMR 7271Sophia AntipolisFrance

Personalised recommendations