Evaluating Feature Change Impact on Multi-product Line Configurations Using Partial Information

  • Nicolas Dintzner
  • Uirá Kulesza
  • Arie van Deursen
  • Martin Pinzger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8919)

Abstract

Evolving large-scale, complex and highly variable systems is known to be a difficult task, where a single change can ripple through various parts of the system with potentially undesirable effects. In the case of product lines, and moreover multi-product lines, a change may affect only certain variants or certain combinations of features, making the evaluation of change effects more difficult.

In this paper, we present an approach for computing the impact of a feature change on the existing configurations of a multi-product line, using partial information regarding constraints between feature models. Our approach identifies the configurations that can no longer be derived in each individual feature model taking into account feature change impact propagation across feature models. We demonstrate our approach using an industrial problem and show that correct results can be obtained even with partial information. We also provide the tool we built for this purpose.

Keywords

software product line variability change impact feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acher, M., Collet, P., Lahire, P., France, R.: Comparing approaches to implement feature model composition. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 3–19. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Acher, M., Collet, P., Lahire, P., France, R.: Managing multiple software product lines using merging techniques. Research report, Laboratoire d’Informatique de Signaux et Systèmes de Sophia Antipolis - UNSA-CNRS (2010)Google Scholar
  3. 3.
    Acher, M., Collet, P., Lahire, P., France, R.: Managing variability in workflow with feature model composition operators. In: Baudry, B., Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 17–33. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line feature models using structural metrics. Software Quality Journal 19(3), 579–612 (2011)CrossRefGoogle Scholar
  5. 5.
    Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization and multilevel configuration of feature models. Software Process: Improvement and Practice 10(2), 143–169 (2005)CrossRefGoogle Scholar
  6. 6.
    Hartmann, H., Trew, T.: Using feature diagrams with context variability to model multiple product lines for software supply chains. In: 12th International Software Product Line Conference, pp. 12–21. IEEE Computer Society, Washington (2008)Google Scholar
  7. 7.
    Heider, W., Rabiser, R., Grünbacher, P., Lettner, D.: Using regression testing to analyze the impact of changes to variability models on products. In: 16th International Software Product Line Conference, pp. 196–205. ACM, New York (2012)Google Scholar
  8. 8.
    Heider, W., Vierhauser, M., Lettner, D., Grunbacher, P.: A case study on the evolution of a component-based product line. In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), pp. 1–10. IEEE Computer Society, Washington (2012)CrossRefGoogle Scholar
  9. 9.
    Holl, G., Thaller, D., Grünbacher, P., Elsner, C.: Managing emerging configuration dependencies in multi product lines. In: 6th International Workshop on Variability Modeling of Software-Intensive Systems, pp. 3–10. ACM, New York (2012)Google Scholar
  10. 10.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Tech. rep., Software Engineering Institute, Carnegie Mellon University (1990)Google Scholar
  11. 11.
    Krueger, C.: New methods in software product line development. In: 10th International Software Product Line Conference, pp. 95–99. IEEE Computer Society, Washington (2006)Google Scholar
  12. 12.
    van Ommering, R., Bosch, J.: Widening the scope of software product lines - from variation to composition. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 328–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Paskevicius, P., Damasevicius, R., Štuikys, V.: Change impact analysis of feature models. In: Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 108–122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer, Secaucus (2005)CrossRefGoogle Scholar
  15. 15.
    Reiser, M.O., Weber, M.: Multi-level feature trees: A pragmatic approach to managing highly complex product families. Requirements Engineering 12(2), 57–75 (2007)CrossRefGoogle Scholar
  16. 16.
    Schirmeier, H., Spinczyk, O.: Challenges in software product line composition. In: 42nd Hawaii International Conference on System Sciences. IEEE Computer Society, Washington (2009)Google Scholar
  17. 17.
    Schmid, K.: Variability support for variability-rich software ecosystems. In: 4th International Workshop on Product Line Approaches in Software Engineering, pp. 5–8. IEEE Computer Society, Washington (2013)Google Scholar
  18. 18.
    Schröter, R., Siegmund, N., Thüm, T.: Towards modular analysis of multi product lines. In: Proc. of the 17th International Software Product Line Conference Co-located Workshops, pp. 96–99. ACM, New York (2013)CrossRefGoogle Scholar
  19. 19.
    Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In: 31st International Conference on Software Engineering, pp. 254–264. IEEE Computer Society, Washington (2009)Google Scholar
  20. 20.
    Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis strategies for software product lines. ACM Computing Surveys 47(1), 1–45 (2014)CrossRefGoogle Scholar
  21. 21.
    Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: An extensible framework for feature-oriented software development. Science of Computer Programming 79, 70–85 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nicolas Dintzner
    • 1
  • Uirá Kulesza
    • 2
  • Arie van Deursen
    • 1
  • Martin Pinzger
    • 3
  1. 1.Software Engineering Research GroupDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of Informatics and Applied MathematicsFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Software Engineering Research GroupUniversity of KlagenfurtKlagenfurtAustria

Personalised recommendations