Skip to main content

Computerized Cognitive Training Based upon Neuroplasticity

  • Chapter
  • First Online:

Part of the book series: Health Informatics ((HI))

Abstract

Computer assisted cognitive training is used in the treatment of traumatic brain injury (TBI), schizophrenia, and attention deficit hyperactivity disorder (ADHD). Pilot studies and case studies have now progressed to randomized controlled trials and meta-analyses that demonstrate efficacy of computer assisted cognitive training. In patients with schizophrenia, computer assisted cognitive remediation has demonstrated improvement in general and social cognition, as well as verbal and working memory, attention/vigilance, and speed of processing. Cognitive rehabilitation in TBI has shown evidence for effectiveness of attention training and language and visual spatial training for aphasia and neglect. Cogmed, a computerized massed practice approach to working memory training, has an adaptive process, to adjust to the person’s performance. Cogmed has frequently been used with patients diagnosed with ADHD. Compliance with treatment is a key to achieving benefit. Working memory training is based on neural plasticity, the concept where the brain is stimulated and reacts by changing. These changes are in neural pathways and synapses. Computerized cognitive training does result in changes in the brain, and these changes are sustained over time. Cogmed has resulted in increased verbal and visual spatial working memory and improvements in attention with ADHD clients. Also gains in reading comprehension and mathematics have been found after completing Cogmed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barlati S, Deste G, De Luca P, Ariu C, Vita A. Cognitive remediation in schizophrenia: current status and future perspectives. Schizophr Res Treat. 2013;2013:1–12. Available from: http://dx.doi.org/10.1155/2013/156084.

    Article  Google Scholar 

  2. Rosenthal R. Assessing the statistical and social importance of the effects of psychotherapy. J Consult Clin Psychol. 1983;51(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  3. Grynszpan O, Perbal S, Pelissolo A, Fossati P, Jouvent R, Dubal S, et al. Efficacy and specificity of computer-assisted cognitive remediation in schizophrenia: a meta-analytical study. Psychol Med. 2011;41(1):163–73.

    Article  CAS  PubMed  Google Scholar 

  4. Twamley EW, Jeste DV, Bellack AS. A review of cognitive training in schizophrenia. Schizophr Bull. 2003;29(2):359–82.

    Article  PubMed  Google Scholar 

  5. Kurtz MM, Moberg PJ, Gur RC, Gur RE. Approaches to cognitive remediation of neuropsychological deficits in schizophrenia: a review and meta-analysis. Neuropsychol Rev. 2001;11(4):197–210.

    Article  CAS  PubMed  Google Scholar 

  6. Pilling S, Bebbington P, Kuipers E, Garety P, Geddes J, Martindale B, et al. Psychological treatments in schizophrenia: II. Meta-analyses of randomized controlled trials of social skills training and cognitive remediation. Psychol Med. 2002;32(5):783–91. Available here: 10.1017/S0033291702005640.

    CAS  PubMed  Google Scholar 

  7. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472–85. Available here: 10.1176/appi.ajp.2010.10060855.

    Article  PubMed  Google Scholar 

  8. McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry. 2007;164:1791–802.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr Bull. 2000;26(1):119–36.

    Article  CAS  PubMed  Google Scholar 

  10. Cicerone KD, Dahlberg C, Malec JF, Langenbahn DM, Felicetti T, Kneipp S, et al. Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002. Arch Phys Med Rehabil. 2005;86:1681–92.

    Article  PubMed  Google Scholar 

  11. Rohling ML, Faust ME, Beverly B, Demakis G. Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology. 2009;23(1):20–39.

    Article  PubMed  Google Scholar 

  12. Park NW, Ingles JL. Effectiveness of attention rehabilitation after an acquired brain injury: a meta-analysis. Neuropsychology. 2001;15(2):199–210.

    Article  CAS  PubMed  Google Scholar 

  13. Lynch B. Historical review of computer-assisted cognitive retraining. J Head Trauma Rehabil. 2002;17(5):446–57.

    Article  PubMed  Google Scholar 

  14. Ryan EB. Memory for goblins: a computer game for assessing and training working memory skill. Clin Gerontol: J Aging Ment Health. 1986;6(1):64–7.

    Google Scholar 

  15. Ryan EB. Memory for goblins: a computer game for assessing and training working memory skill. Comput Hum Serv. 1994;11(1–2):213–7.

    Google Scholar 

  16. Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol. 2002;24(6):781–91.

    Article  PubMed  Google Scholar 

  17. Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Kerstin D, et al. Computerized training of working memory in children with ADHD – a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry. 2005;44(2):177–86.

    Article  PubMed  Google Scholar 

  18. Morrison AB, Chein JM. Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev. 2011;18(1):46–60.

    Article  PubMed  Google Scholar 

  19. Westerberg H, Hirvikoski T, Forssberg H, Klingberg T. Visuo-spatial working memory span: a sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychol. 2004;10(3):155–61.

    Article  PubMed  Google Scholar 

  20. Gathercole SE, Pickering SJ, Ambridge B, Wearing H. The structure of working memory from 4 to 15 years of age. Dev Psychol. 2004;40(2):177–90.

    Article  PubMed  Google Scholar 

  21. Pickering SJ. The development of visuo-spatial working memory. Memory. 2001;9(4–6): 423–32.

    Article  CAS  Google Scholar 

  22. Keating DP. Cognitive and brain development. In: Lerner RM, Steinberg L, editors. Handbook of adolescent psychology. 2nd ed. Hoboken: Wiley; 2004. p. 45–84.

    Google Scholar 

  23. Cowan N, Morey CC, AuBuchon AM, Zwilling CE, Gilchrist AL, Saults JS. New insights into an old problem: distinguishing storage from processing in the development of working memory. In: Barrouillet P, Gaillard V, editors. Cognitive development and working memory: a dialogue between neo-Piagetian theories and cognitive approaches. New York: Psychology Press; 2011.

    Google Scholar 

  24. Huizinga M, Dolan CV, van der Molen MW. Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia. 2006;44(11):2017–36.

    Article  PubMed  Google Scholar 

  25. Oldham M, Kellett S, Miles E, Sheeran P. Interventions to increase attendance at psychotherapy: a meta-analysis of randomized controlled trials. J Consult Clin Psychol. 2012;80(5): 928–39.

    Article  PubMed  Google Scholar 

  26. Wierzbicki M, Pekarik G. A meta-analysis of psychotherapy dropout. Prof Psychol Res Pract. 1993;24:190–5.

    Article  Google Scholar 

  27. Newman MG, Szkodny LE, Llera SJ, Przeworski A. A review of technology-assisted self-help and minimal contact therapies for anxiety and depression: is human contact necessary for therapeutic efficacy? Clin Psychol Rev. 2011;31(1):89–103.

    Article  PubMed  Google Scholar 

  28. de Graaf LE, Huibers MJH, Riper H, Gerhards SAH, Arntz A. Use and acceptability of unsupported online computerized cognitive behavioral therapy for depression and associations with clinical outcome. J Affect Disord. 2009;116(3):227–31.

    Article  PubMed  Google Scholar 

  29. Cavanagh K, Bennett-Levy J. Turn on, tune in and (don’t) drop out: engagement, adherence, attrition, and alliance with internet-based interventions. In: Richards DA, Farrand P, Christensen H, Griffiths KM, Kavanaugh DJ, Klein B, et al., editors. Oxford guide to low intensity CBT interventions. Oxford guides in cognitive behavioural therapy. New York: Oxford University Press; 2010.

    Google Scholar 

  30. Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011;24:302–15. Available from: doi:10.1007/s10548-011-0196-8.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28:377–401. Available from: doi:10.1146/annurev.neuro.27.070203.144216.

    Article  CAS  PubMed  Google Scholar 

  32. Klingberg T. The learning brain. New York: Oxford University press; 2013.

    Google Scholar 

  33. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–86. Available from: doi:10.1146/annurev.neuro.21.1.149. PMID 9530495.

    Article  CAS  PubMed  Google Scholar 

  34. Maguire EA, Frackowiak RS, Frith CD. Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci. 1997;17(18):7103–10. Available from: PMID 9278544.

    CAS  PubMed  Google Scholar 

  35. Woollett K, Maguire EA. Acquiring “the Knowledge” of London’s layout drives structural brain changes. Curr Biol. 2011;21(24):2109–14. Available from: doi:10.1016/j.cub.2011.11.018. PMC 3268356. PMID 22169537.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97(8):4398–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wall JT, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Res Rev. (Elsevier Science B.V.) 2002;39(2–3):181–215. Available from: doi:10.1016/S0165-0173(02)00192-3. PMID 12423766

  38. Shaw C, McEachern J, editors. Toward a theory of neuroplasticity. London: Psychology Press; 2001.

    Google Scholar 

  39. Westerberg H, Klingberg T. Changes in cortical activity after training of working memory – a single-subject analysis. Physiol Behav. 2007;92:186–92.

    Article  CAS  PubMed  Google Scholar 

  40. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004;7(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  41. Frith CD. The value of brain imaging in the study of development and its disorders. J Child Psychol Psychiatry. 2006;47(10):979–82. Available from: doi:10.1111/j.1469-7610.2006.01690.x.

    Article  PubMed  Google Scholar 

  42. Fassbender C, Schweitzer JB, Cortes CR, Tagamets MA, Windsor TA, Reeves GM, Gullapalli R. Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function. PLoS One 2011;6(11):Article e27240. Available from: doi:10.1371/journal.pone.0027240

  43. Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, Castellanos FX. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169(10):1038–55.

    Article  PubMed  Google Scholar 

  44. McCarthy H, Skokauskas N, Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol Med. 2014;44(4):869–80.

    Article  CAS  PubMed  Google Scholar 

  45. Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2006;61:1361–9.

    Article  PubMed  Google Scholar 

  46. Hutchinson AD, Mathias JL, Banich MT. Corpus callosum morphology in children and adolescents with attention deficit hyperactivity disorder: a meta-analytic review. Neuropsychology. 2008;22(3):341–9. Available from doi:10.1037/0894-4105.22.3.341.

    Article  CAS  PubMed  Google Scholar 

  47. Ellison-Wright I, Ellison-Wright Z, Bullmore E. Structural brain change in attention deficit hyperactivity disorder identified by meta-analysis. BMC Psychiatry 2008;8:51. Available from: http://www.biomedcentral.com/1471-244X/8/51

  48. Darki F, Klingberg T. The role of Fronto-Parietal and Fronto-Striatal networks in the development of working memory: a longitudinal study. Cereb Cortex 2014. doi:10.1093/cercor/bht352. Available from: http://cercor.oxfordjournals.org/content/early/2014/01/09/cercor.bht352.abstract

  49. Zhu Y, Ying K, Wang J, Su L, Chen J, Lin F, et al. Differences in functional activity between boys with pure oppositional defiant disorder and controls during a response inhibition task: a preliminary study. Brain Imaging Behav. 2014. Available here: http://www.ncbi.nlm.nih.gov/pubmed/24390655

  50. Nymberg C, Jia T, Lubbe S, Ruggeri B, Desrivieres S, Barker G, et al. IMAGEN consortium neural mechanisms of attention-deficit/hyperactivity disorder symptoms are stratified by MAOA genotype. Biol Psychiatry. 2013;74(8):607–14.

    Article  CAS  PubMed  Google Scholar 

  51. de Mello CB, Rossi ASU, Cardoso TSG, Rivero TS, de Moura LM, Nogueira RG, et al. Neuroimaging and neuropsychological analyses in a sample of children with ADHD inattentive subtype. Clin Neuropsychiatry. 2013;10(2):45–54.

    Google Scholar 

  52. Tafazoli S, O’Neill J, Bejjani A, Ly R, Salamon N, McCracken JT, Alger JR. MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res. 2013;47(4):505–12. Available from: doi:10.1016/j.jpsychires.2012.11.011.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hart H, Radua J, Mataix-Cols D, Rubia K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36(10):2248–56.

    Article  PubMed  Google Scholar 

  54. McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science (New York). 2009;323:800–2.

    Article  CAS  Google Scholar 

  55. Brehmer Y, Westerberg H, Bäckman L. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Front Hum Neurosci. 2012;6:63, 1–7

    Google Scholar 

  56. Brehmer Y, Rieckmann A, Bellander M, Westerberg H, Fischer H, Backman L. Neural correlates of training-related working-memory gains in old age. Neuroimage. 2011;58(4):1110–20.

    Article  PubMed  Google Scholar 

  57. Shinaver 3rd CS, Entwistle PE, Söderqvist S. Cogmed WM training: reviewing the reviews. Appl Neuropsychol Child. 2014;3(3):163–72.

    Article  PubMed  Google Scholar 

  58. Melby-Lervåg M, Lyster SA, Hulme C. Phonological skills and their role in learning to read: a meta-analytic review. Psychol Bull. 2012;138(2):322–52.

    Article  PubMed  Google Scholar 

  59. Shipstead Z, Redick TS, Engle RW. Is working memory training effective? Psychol Bull. 2012;138(4):628–54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22409508.

    Article  PubMed  Google Scholar 

  60. Ralph K. Cogmed claims & evidence. Pearson, Cogmed; 2011 (updated March 2014) Available from: http://www.Cogmed.com/research

  61. Dahlin KIE. Effects of WM training on reading in children and with special needs. Read Writ. 2010;24(4):479–91.

    Article  Google Scholar 

  62. Bergman Nutley S, Söderqvist S, Bryde S, Thorell LB, Humphreys K, Klingberg T. Gains in fluid intelligence after training nonverbal reasoning in 4-year-old children: a controlled, randomized study. Dev Sci. 2011;14(3):591–601.

    Article  PubMed  Google Scholar 

  63. Thorell LB, Lindqvist S, Bergman Nutley S, Bohlin G, Klingberg T. Training and transfer effects of executive functions in preschool children. Dev Sci. 2009;12(1):106–13.

    Article  PubMed  Google Scholar 

  64. Grunewaldt KH, Logaugen CCG, Dordi A, Brugakk A, Skranes J. Working memory training improves cognitive function in VLBW preschoolers. Pediatrics. 2013;131(3):e747–54.

    Article  PubMed  Google Scholar 

  65. Alloway TP, Gathercole SE. The role of sentence recall in reading and language skills of children with learning difficulties. Learn Individ Differ. 2005;15(4):271–82.

    Article  Google Scholar 

  66. Gathercole SE, Pickering SJ. Working memory deficits in children with low achievements in the national curriculum at 7 years of age. Br J Educ Psychol. 2000;70(2):177–94.

    Article  PubMed  Google Scholar 

  67. Foy JG, Mann VA. Adaptive cognitive training enhances executive control and visuospatial and verbal working memory in beginning readers. Int Educ Res. 2014;2(1):19–43.

    Article  Google Scholar 

  68. Söderqvist S, Bergman Nutley S, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J. Dopamine, working memory, and training induced plasticity: implications for developmental research. Dev Psychol. 2011;21:1–8.

    Google Scholar 

  69. Bellander M, Brehmer Y, Westerberg H, Karlsson S, Furth D, Bergman O, et al. Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement. Neuropsychologia. 2011;49(7):1938–42.

    Article  PubMed  Google Scholar 

  70. Brehmer Y, Westerberg H, Bellander M, Fürth D, Karlsson S, Bäckman L. Working memory plasticity modulated by dopamine transporter genotype. Neurosci Lett. 2009;467(2):117–20.

    Article  CAS  PubMed  Google Scholar 

  71. Holmes J, Gathercole SE, Place M, Dunning DL, Hilton KL, Elliott JG. Working memory deficits can be overcome: impacts of training and medication on working memory in children with ADHD. Appl Cogn Psychol. 2010;24:827–36.

    Article  Google Scholar 

  72. Mezzacappa E, Buckner JC. WM training for children with attention problems or hyperactivity: a school-based pilot study. School Mental Health. 2010. doi:10.1007/s12310-010-9030-9

  73. Willcutt EG, Nigg JT, Pennington BF, Solanto MV, Rohde LA, Tannock R, et al. Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. J Abnorm Psychol. 2012;121(4):991–1010.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Nikolas MA, Nigg JT. Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology. 2013;27(1):107–20. Available here: doi:10.1037/a0030685.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Holmes J, Gathercole SE, Dunning DL. Adaptive training leads to sustained enhancement of poor working memory in children. Dev Sci. 2009;12:F9–15.

    Article  PubMed  Google Scholar 

  76. Dunning DL, Holmes J, Gathercole SE. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Dev Sci. 2013;16(6):915–25.

    PubMed Central  PubMed  Google Scholar 

  77. Dahlin KIE. Working memory training and its effects on mathematical achievement in children with attention deficits and special needs. J Educ Learn. 2013;2(1):118–33.

    Article  Google Scholar 

  78. Dahlin KIE. Does it pay to practice? A quasi-experimental study on working memory training and its effects on reading and basic number skills. Doctoral Thesis, Stockholm University, Faculty of Social Sciences, Department of Special Education; 2013

    Google Scholar 

  79. Green CT, Long DL, Green D, Iosif AM, Dixon JF, Miller MR, et al. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity? Neurotherapeutics. 2012;9(3):639–48.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Hovik KT, Saunes B, Aarlien AK, Egeland J. RCT of working memory training in ADHD: long-term near-transfer effects. PLoS One 2013;8(12):Article e80561

    Google Scholar 

  81. Egeland J, Aarlien AK, Saunes B. Few effects of far transfer of working memory training in ADHD: a randomized controlled trial. PLOS One 2013. Available online: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0075660

  82. van Dongen-Boomsma M, Vollebregt MA, Buitelaar JK, Slatts-Willemse D. Working memory training in young children with ADHD: a randomized placebo-controlled trial. J Child Psychol Psychaitry. 2014;55(8):886–96.

    Article  Google Scholar 

  83. Beck SJ, Hanson CA, Puffenberger SS, Benninger KL, Benninger WB. A controlled trial of working memory training for children and adolescents with ADHD. J Clin Child Adolesc Psychol. 2010;39(6):825–36.

    Article  PubMed  Google Scholar 

  84. Chacko A, Bedard AC, Marks DJ, Feirsen N, Uderman JZ, Chimiklis A, et al. A randomized clinical trial of Cogmed working memory training in school‐age children with ADHD: a replication in a diverse sample using a control condition. J Child Psychol Psychiatry. 2014;55(3):247–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Gray SA, Chaban P, Martinussen R, Goldberg R, Gotlieb H, Kronitz R, et al. Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD; a randomized controlled trial. J Child Psycol Psychiatry. 2012;53(12):1277–84.

    Article  CAS  Google Scholar 

  86. Waschbusch DA, Willoughby MT. Parent and teacher ratings on the IOWA Conners rating scale. J Psychopathol Behav Assess. 2008;30:180–92.

    Article  Google Scholar 

  87. Gropper RJ, Gotlieb H, Kronitz R, Tannock R. Working memory training in college students with ADHD or LD. J Atten Disord. 2014. Available here: http://jad.sagepub.com/content/early/2014/01/13/1087054713516490.abstract

  88. Dweck CS. Mindset: the new psychology of success. New York: Random House; 2006.

    Google Scholar 

  89. Moreau D. Making sense of discrepancies in working memory training experiments: a Monte Carlo simulation. Front Syst Neurosci. 2014. Available here: http://journal.frontiersin.org/Journal/10.3389/fnsys.2014.00161/full

  90. Rast P. Verbal knowledge, working memory, and processing speed as predictors of verbal learning in older adults. Dev Psychol. 2011;47(5):1490–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Shinaver Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shinaver, C., Entwistle, P.C. (2015). Computerized Cognitive Training Based upon Neuroplasticity. In: Dewan, N., Luo, J., Lorenzi, N. (eds) Mental Health Practice in a Digital World. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-14109-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14109-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14108-4

  • Online ISBN: 978-3-319-14109-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics