Skip to main content

Sodium Hydroxide for Clean Hydrogen Production

  • Chapter
  • First Online:
Clean Hydrogen Production Methods

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

Hydrogen can be generated in several ways utilizing either renewable or non-renewable sources. However, the lack of a clean hydrogen generation methods at a large scale is considered to be one of the obstacles to implement hydrogen economy. The role of sodium hydroxide is increasing as a valuable ingredient to produce hydrogen. However, the vast use of sodium hydroxide is limited due to its (i) corrosive nature and (ii) high-energy-intensive production method. Various current technologies include sodium hydroxide to lower the operating temperature, accelerate hydrogen generation rate as well as sequester carbon dioxide during hydrogen production. Sodium hydroxide finds applications in all the major hydrogen production methods such as steam methane reforming (SMR), coal gasification, biomass gasification, electrolysis, photochemical and thermochemical. Sodium hydroxide, being alkaline, acts as a catalyst, promoter or even a precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta RB (2009) Hydrogen fuel: production, transport, and storage, Chapter 2. CRC Press, Boca Raton

    Google Scholar 

  2. Audus H, Kaarstad O, Kowal M (1996) Decarbonization of fossil fuels: hydrogen as an energy vector. In: Proceedings of 11th world hydrogen energy conference. Stuttgart, Germany

    Google Scholar 

  3. Reichman B, Mays W, Strebe J, Fetcenko M (2010) Ovonic renewable hydrogen (ORH)—low temperature hydrogen from renewable fuels. Int J Hydrogen Energy 35:4918–4924. doi:10.1016/j.ijhydene.2009.08.097

    Article  CAS  Google Scholar 

  4. Onwudili JA, Williams PT (2009) Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. Int J Hydrogen Energy 34:5645–5656. doi:10.1016/j.ijhydene.2009.05.082

    Article  CAS  Google Scholar 

  5. Kamo T, Takaoka K, Otomo J, Takahashi H (2006) Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl) chloride. Fuel 85:1052–1059. doi:10.1016/j.fuel.2005.10.002

    Article  CAS  Google Scholar 

  6. Kumar S, Saxena SK (2013) Role of sodium hydroxide for hydrogen gas production and storage. In: Mendez-Vilas A (ed) Materials and processes for energy: communicating current research and technological developments. Formatex Research Center, Spain

    Google Scholar 

  7. Probstein RF, Hicks RE (2000) Synthetic fuels, Chap 2. Dover, New York

    Google Scholar 

  8. Muradov N (2009) Production of hydrogen from hydrocarbons. In: Gupta R (ed) Hydrogen fuel, production, transport and storage. Boca Raton, FL

    Google Scholar 

  9. Armor J (1999) The multiple roles for catalysis in the production of H2. Appl Catal A General 176:159–176. doi:10.1016/S0926-860X(98)00244-0

    Article  CAS  Google Scholar 

  10. Gupta H, Mahesh I, Bartev S, Fan LS (2004) Enhanced hydrogen production integrated with CO2 separation in a single-stage reactor; DOE contract no: DE FC26-03NT41853. Columbus

    Google Scholar 

  11. Ziock H-J, Lackner KS, Harrison DP (2001) Zero emission coal power, a new concept. In: Proceedings of 1st national conference on carbon sequestration. Washington

    Google Scholar 

  12. Stowinski G (2006) Some technical issues of zero-emission coal technology. Int J Hydrogen Energy 31:1091–1102. doi:10.1016/j.ijhydene.2005.08.012

    Article  Google Scholar 

  13. Cormos CC, Starr F, Tzimas E, Peteves S (2008) Innovative concept for hydrogen production processes based on coal gasification with CO2 capture. Int J Hydrogen Energy 33:1286–1294. doi:10.1016/j.ijhydene.2007.12.048

    CAS  Google Scholar 

  14. Chiesa P, Consonni S, Kreutz T, Williams R (2005) Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: performance and emissions. Int J Hydrogen Energy 30:747–767. doi:10.1016/j.ijhydene.2004.08.002

    Article  CAS  Google Scholar 

  15. Wang Z, Zhou J, Wang Q, Fan J, Cen K (2006) Thermodynamic equilibrium analysis of hydrogen production by coal based on Coal/CaO/H2O gasification system. Int J Hydrogen Energy 31:945–952. doi:10.1016/j.ijhydene.2005.07.010

    Article  CAS  Google Scholar 

  16. Boswell MC, Dickson JV (1918) The fusion of sodium hydroxide with some inorganic salts. J Am Chem Soc 40:1779–1786. doi:10.1021/ja02245a003

    Article  CAS  Google Scholar 

  17. Saxena S, Kumar S, Drozd V (2011) A modified steam-methane-reformation reaction for hydrogen production. Int J Hydrogen Energy 36:4366–4369. doi:10.1016/j.ijhydene.2010.12.133

    Article  CAS  Google Scholar 

  18. Saxena S, Drozd V, Durygin A (2008) A fossil-fuel based recipe for clean energy. Int J Hyd Energy 33:3625–3631. doi:10.1016/j.ijhydene.2008.04.050

    Article  CAS  Google Scholar 

  19. Ishida M, Takenaka S, Yamanaka I, Otsuka K (2006) Production of COx-free hydrogen from biomass and NaOH mixture: effect of catalysts. Energy Fuels 20:748–753. doi:10.1021/ef050282u

    Article  CAS  Google Scholar 

  20. Minowa T, Fang Z, Ogi T, Varhegyi G (1998) Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J Chem Eng Jpn 31:131–134. doi:10.1252/jcej.31.131

    Article  CAS  Google Scholar 

  21. Muangrat R, Onwudili JA, Williams PT (2010) Alkali-promoted hydrothermal gasification of biomass food processing waste: a parametric study. Int J Hydrogen Energy 35:7405–7415. doi:10.1016/j.ijhydene.2010.04.179

    Article  CAS  Google Scholar 

  22. Minowa T, Fang Z (1998) Hydrogen production from cellulose in hot compressed water using reduced nickel catalyst: product distribution at different reaction temperatures. J Chem Eng Jpn 31:488–491. doi:10.1016/S0920-5861(98)00277-6

    Article  CAS  Google Scholar 

  23. Wang J, Zhang M, Chen M, Min F, Zhang S, Ren Z, Yan Y (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444:110–114. doi:10.1016/j.tca.2006.02.007

    Article  CAS  Google Scholar 

  24. Su S, Li W, Bai Z, Xiang H, Bai J (2010) Production of hydrogen by steam gasification from lignin with Al2O3·Na2xH2O/NaOH/Al(OH)3 catalyst. J Fuel Chem Technol 238:270–274. doi:10.1016/S1872-5813(10)60032-1

    Article  Google Scholar 

  25. Su S, Li W, Bai Z, Xiang H (2008) A preliminary study of a novel catalyst Al2O3·Na2O·xH2O/NaOH/Al(OH)3 for production of hydrogen and hydrogen-rich gas by steam gasification from cellulose. Int J Hydrogen Energy 33:6947–6952. doi:10.1016/j.ijhydene.2008.09.003

    Article  CAS  Google Scholar 

  26. Williams DD, Grand JA, Miller RR (1956) The reactions of molten sodium hydroxide with various metals. J Am Chem Soc 78:5150–5155. doi:10.1021/ja01601a004

    Article  CAS  Google Scholar 

  27. Annual Report National Advisory Committee for aeronautics (1934) Washington

    Google Scholar 

  28. Wang HZ, Leung DYC, Leung MKH, Ni M (2009) A review on hydrogen production using aluminum and aluminum alloys. Renew Sustain Energy Rev 13:845–853. doi:10.1016/j.rser.2008.02.009

    Article  CAS  Google Scholar 

  29. Belitskus D (1970) Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. J Electrochem Soc 117:1097–1099. doi:10.1149/1.2407730

    Article  Google Scholar 

  30. Jung CR, Kundu A, Ku B, Gil JH, Lee HR, Jang JH (2008) Hydrogen from aluminum in a flow reactor for fuel cell applications. J Power Sources 175:490–494. doi:10.1016/j.jpowsour.2007.09.064

    Article  CAS  Google Scholar 

  31. Deng ZY, Tang YB, Zhu LL, Sakka Y, Ye J (2010) Effect of different modification agents on hydrogen-generation by the reaction of Al with water. Int J Hydrogen Energy 35:9561–9568. doi:10.1016/j.ijhydene.2010.07.027

    Article  CAS  Google Scholar 

  32. Dupiano P, Stamatis D, Dreizin EL (2011) Hydrogen production by reacting water with mechanically milled composite aluminum metal oxide powders. Int J Hydrogen Energy 36:4781–4791. doi:10.1016/j.ijhydene.2011.01.062

    Article  CAS  Google Scholar 

  33. Skrovan J, Alfantazi A, Troczynski T (2009) Enhancing aluminum corrosion in water. J Appl Electrochem 39:1695–1702. doi:10.1007/s10800-009-9862-x

    Article  CAS  Google Scholar 

  34. Soler L, Macana´s J, Mun˜oz M, Casado J (2005) Hydrogen generation from aluminum in a non-consumable potassium hydroxide solution. In: Proceedings of international hydrogen energy congress and exhibition IHEC. Istanbul, Turkey

    Google Scholar 

  35. Wang W, Chen DM, Yang K (2010) Investigation on microstructure and hydrogen generation performance of Al-rich alloys. Int J Hydrogen Energy 35:12011–12019. doi:10.1016/j.ijhydene.2010.08.089

    Article  CAS  Google Scholar 

  36. Ziebarth JT, Woodall JM, Kramer RA, Choi G (2011) Liquid phase enabled reaction of Al–Ga and Al–Ga–In–Sn alloys with water. Int J Hydrogen Energy 36:5271–5279. doi:10.1016/j.ijhydene.2011.01.127

    Article  CAS  Google Scholar 

  37. Fan MQ, Xu F, Sun LX (2007) Hydrogen generation by hydrolysis reaction of ball-milled Al–Bi alloys. Energy Fuels 21:2294–2298. doi:10.1021/ef0700127

    Article  CAS  Google Scholar 

  38. Ilyukhina AV, Kravchenko OV, Bulychev BM, Shkolnikov EI (2010) Mechanochemical activation of aluminum with galliams for hydrogen evolution from water. Int J Hydrogen Energy 35:1905–1910. doi:10.1016/j.ijhydene.2009.12.118

    Article  CAS  Google Scholar 

  39. Aleksandrov YA, Tsyganova EI, Pisarev AL (2003) Reaction of aluminum with dilute aqueous NaOH solutions. Russ J General Chem 73:689–694. doi:10.1023/A:1026114331597

  40. Zhuk AZ, Sheindlin AE, Kleymenov BV (2006) Use of low-cost aluminum in electric energy production. J Power Sour 157:921–926. doi:10.1016/j.jpowsour.2005.11.097

    Article  CAS  Google Scholar 

  41. Stockburger D, Stannard JH, Rao BML, Kobasz W, Tuck CD (1992) On-line hydrogen generation from aluminum in an alkaline solution. In: Proc Symp Hydrogen Storage Mater, Batteries Electrochem 92:431–444

    Google Scholar 

  42. Soler L, Macana´s J, Mun˜oz M, Casado J (2007) Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications. J Power Sour 169:144–149. doi:10.1016/j.jpowsour.2007.01.080

  43. Martı´nez SS, Benı´tesa WL, Gallegosa A, Sebastia´n PJ (2005) Recycling of aluminum to produce green energy. Solar Energy Mater Solar Cells 88:237–243. doi:10.1016/j.jsolmat.2004.09.022

  44. Yalcin S (1989) A review of nuclear hydrogen production. Int J Hydrogen Energy 14:551–561. doi:10.1016/0360-3199(89)90113-4

  45. Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822. doi:10.1016/j.energy.2005.11.002

    Article  CAS  Google Scholar 

  46. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260. doi:10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  47. Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475. doi:10.1016/0038-092X(77)90102-5

    Article  CAS  Google Scholar 

  48. Sibieude F, Ducarroir M, Tofighi A, Ambriz J (1982) High temperature experiments with a solar furnace: the decomposition of Fe3O4, Mn3O4 CdO. Int J Hydrogen Energy 7:79–88. doi:10.1016/0360-3199(82)90209-9

    Article  CAS  Google Scholar 

  49. Ambriz JJ, Ducarroir M, Sibieude F (1982) Preparation of cadmium by thermal dissociation of cadmium oxide using solar energy Int J Hydrogen Energy 7:143–153. doi:10.1016/0360-3199(82)90141-0

  50. Weidenkaff A, Steinfeld A, Wokaun A, Auer PO, Eichler B, Reller A (1999) Direct solar thermal dissociation of zinc oxide: condensation and crystallisation of zinc in the presence of oxygen. Sol Energy 65:59–69. doi:10.1016/S0038-092X(98)00088-7

    Article  CAS  Google Scholar 

  51. Lundberg M (1993) Model calculations on some feasible two-step water splitting processes. Int J Hydrogen Energy 18:369–376. doi:10.1016/0360-3199(93)90214-U

    Article  CAS  Google Scholar 

  52. O’Keefe D, Allen C, Besenbruch G, Brown L, Norman J, Sharp R (1982) Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7:381–392. doi :10.1016/0360-3199(82)90048-9

  53. Sakurai M, Nakajima H, Amir R, Onuki K, Shimizu S (2000) Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 25:613–619. doi:10.1016/S0360-3199(99)00074-9

  54. Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H (2004) A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine sulfur process. Nucl Eng Des 233:347–354. doi:10.1016/j.nucengdes.2004.08.025

    Article  CAS  Google Scholar 

  55. Kameyama H, Yoshida K (1981) Reactor design for the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 6:567–575. doi:10.1016/0360-3199(81)90022-7

    Article  CAS  Google Scholar 

  56. Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M (1989) Process simulation of “Mascot” plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 14:323–330. doi:10.1016/0360-3199(89)90133-X

    Article  CAS  Google Scholar 

  57. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21:865–870. doi:10.1016/0360-3199(96)00024-9

    Article  CAS  Google Scholar 

  58. Miyoka H, Ichikawa T, Nakamura N, Kojima Y (2012) Low temperature water splitting by sodium redox reaction. Int J Hydrogen Energy 37:17709–17714. doi:10.1016/j.ijhydene.2012.09.085

    Article  Google Scholar 

  59. Weimer A (2008) H2A analysis for Manganese oxide based solar thermal water splitting cycle. University of Colorado STCH, Denver

    Google Scholar 

  60. Tamura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20:325–330. doi:10.1016/0360-5442(94)00090-O

    Article  Google Scholar 

  61. Sturzenegger M, Ganz J, Nüesch P, Schelling T (1999) Solar hydrogen from a manganese oxide based thermochemical cycle. J de Phys Arch 09:Pr3–331–Pr3–335. doi:10.1051/jp4:1999351

  62. Xu B, Bhawe Y, Davis ME (2012) Low-temperature, manganese oxide-based, thermochemical water splitting cycle. Proc Natl Acad Sci 109:9260–9264. doi:10.1073/pnas.1206407109

    Article  CAS  Google Scholar 

  63. Leitner W, Dinjus E, Gaßner F (1994) Activation of carbon dioxide: IV. Rhodium-catalysed hydrogenation of carbon dioxide to formic acid. J Organomet Chem 475:257–266. doi:10.1016/0022-328X(94)84030-X

    Article  CAS  Google Scholar 

  64. Coffey RS (1967) The decomposition of formic acid catalysed by soluble metal complexes. Chem Commun 18:923b–924. doi:10.1039/C1967000923B

    Google Scholar 

  65. Yoshida T, Ueda Y, Otsuka S (1978) Activation of water molecule. 1. Intermediates bearing on the water gas shift reaction catalyzed by platinum (0) complexes. J Am Chem Soc 100:3941–3942. doi:10.1021/ja00480a054

    Article  CAS  Google Scholar 

  66. Paonessa RS, Trogler WC (1982) Solvent-dependent reactions of carbon dioxide with a platinum (II) Dihydride reversible formation of a platinum(II) formatohydride and a cationic platinum(II) dimer, [Pt2H3(PEt3)4][HCO2]. J Am Chem Soc 104:3529–3530. doi:10.1021/ja00376a058

    Article  CAS  Google Scholar 

  67. Joszai I, Joo F (2004) Hydrogenation of aqueous mixtures of calcium carbonate and carbon dioxide using a water-soluble rhodium(I)–tertiary phosphine complex catalyst. J Mol Catal A: Chem 224:87–91. doi:10.1016/j.molcata.2004.08.045

    Article  CAS  Google Scholar 

  68. Gao Y, Kuncheria JK, Yap GPA, Puddephatt RJ (1998) An efficient binuclear catalyst for decomposition of formic acid. Chem Commun 21:2365–2366. doi:10.1039/A805789C

    Article  Google Scholar 

  69. Shin JH, Churchill DG, Parkin G (2002) Carbonyl abstraction reactions of Cp*Mo(PMe3)3H with CO2, (CH2O) n , HCO2H, and MeOH: the synthesis of Cp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid. J Organomet Chem 642:9–15. doi:10.1016/S0022-328X(01)01218-9

    Article  CAS  Google Scholar 

  70. Loges B, Boddien A, Gartner F, Junge H, Beller M (2010) Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top Catal 53:902–914. doi:10.1007/s11244-010-9522-8

    Article  CAS  Google Scholar 

  71. Fukuzumi S, Suenobu T, Ogo S. Catalysts for the decomposition of formic acid, method for decomposing formic acid, process for producing hydrogen, apparatus for producing and decomposing formic acid, and method for storing and producing hydrogen, US Patent application no. US2010/ 0034733 A1

    Google Scholar 

  72. Guo WL, Li L, Li LL, Tian S, Liu SL, Wu YP (2011) Hydrogen production via electrolysis of aqueous formic acid solutions. Int J Hydrogen Energy 36:9415–9419. doi:10.1016/j.ijhydene.2011.04.127

    Article  CAS  Google Scholar 

  73. Majewski A, Morris DJ, Kendall K, Wills M (2010) A continuous-flow method for the generation of hydrogen from formic acid. ChemSusChem 3:431–434. doi:10.1002/cssc.201000017

    Article  CAS  Google Scholar 

  74. Loew O (1887) Ueber einige katalytische Wirkungen. Berichte der deutschen chemischen Gesellscha 20:144–145

    Article  Google Scholar 

  75. Kapoor S, Naumov S (2004) On the origin of hydrogen in the formaldehyde reaction in alkaline solution. Chem Phys Lett 387:322–326. doi:10.1016/j.cplett.2004.01.127

    Article  CAS  Google Scholar 

  76. Ansell MF, Coffey S, Rodd EH (1965) Rodd’s chemistry of carbon compounds Elsevier. Page, Amsterdam 11

    Google Scholar 

  77. Ashby EC, Doctorovich F, Liotta CL, Neumann HM, Barefield EK, Konda A, Zhang K, Hurley J, Siemer DD (1993) Concerning the formation of hydrogen in nuclear waste. Quantitative generation of hydrogen via a Cannizzaro intermediate. J Am Chem Soc 115:1171–1173. doi:10.1021/ja00056a065

    Article  CAS  Google Scholar 

  78. Harden A (1899) Formaldehyde, action of hydrogen peroxide on. J Soc Chem Indus 15:158–159

    Google Scholar 

  79. Satterfield CN, Wilson RE, Le Clair RM, Reid RC (1954) Analysis of aqueous mixtures of hydrogen peroxide and aldehydes. Anal Chem 26:1792–1797. doi:10.1021/ac60095a030

    Article  CAS  Google Scholar 

  80. Gorse RA, Volman DH (1971) Analysis of mixtures of hydrogen peroxide and formaldehyde. Anal Chem 43:284–284. doi:10.1021/ac60297a031

    Article  CAS  Google Scholar 

  81. Kurt C, Bittner J (2006) Sodium hydroxide: Ullman’s encyclopedia of industrial chemistry.doi:10.1002/14356007.a24_345.pub2

  82. Kumar S (2013) Clean hydrogen production and carbon dioxide capture methods. FIU electronic theses and dissertations paper 1039. http://digitalcommons.fiu.edu/etd/1039

  83. Kreider PB, Funke HH, Cuche K, Schmidt M, Steinfeld A, Weimer AW (2011) Manganese oxide based thermochemical hydrogen production cycle. Int J Hydrogen Energy 36:7028–7037. doi:10.1016/j.ijhydene.2011.03.003

    Article  CAS  Google Scholar 

  84. Charvin P, Abanades S, Beche E, Lemont F, Flamant G (2009) Hydrogen production from mixed cerium oxides via three-step water-splitting cycles. Solid State Ionics 180:1003–1010. doi:10.1016/j.ssi.2009.03.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Kumar, S. (2015). Sodium Hydroxide for Clean Hydrogen Production. In: Clean Hydrogen Production Methods. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-14087-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14087-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14086-5

  • Online ISBN: 978-3-319-14087-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics