Skip to main content

Role of Hydrogen in the Energy Sector

  • Chapter
  • First Online:
Book cover Clean Hydrogen Production Methods

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

The vast depletion of fossil fuels, the increase in carbon dioxide levels in the atmosphere, and the related environmental hazards represent a growing concern for the mankind. Therefore, over the past few decades, significant efforts have been made to establish hydrogen economy. Hydrogen is a high-efficiency energy carrier, which can lead to zero or near-zero emissions at the point of use. Moreover, it has been technically shown that hydrogen can be used for transportation, heating, and power generation, and could replace current fuels in all the present applications. Besides the challenge of storing hydrogen, development of clean hydrogen production methods is considered as a prime hindrance to establish the hydrogen economy. Here, the focus is to provide a brief overview of all the processes based on both renewable and non-renewable energy sources that have been proposed to produce clean hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. US Energy Information Administration (EIA), International Energy Statistics database (as of Nov. 2013) www.eia.gov/ies.Projections: EIA, Annual Energy Outlook 2014, DOE/EIA-0383(214) (Washington, DC: April 2014) AEO 2014. National Energy Modeling System, run REF 2014.D1024BA www.eia.gov/aeo

  2. Edigera VS, Akar S, Ugurlu B (2006) Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model. Energy Policy 34:3836–3846. doi:10.1016/j.enpol.2005.08.023

    Article  Google Scholar 

  3. Edigera VS, Akar S (2007) ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35:1701–1708. doi:10.1016/j.enpol.2006.05.009

    Article  Google Scholar 

  4. Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renew Sustain Energy Rev 11:1388–1413. doi:10.1016/j.rser.2005.12.004

    Article  Google Scholar 

  5. Khadse A, Qayyumi M, Mahajani S, Aghalayam P (2007) Underground coal gasification: a new clean coal utilization technique for India. Energy 32:2061–2071. doi:10.1016/j.energy.2007.04.012

    Article  CAS  Google Scholar 

  6. Wolela A (2007) Fossil fuel energy resources of Ethiopia: coal deposits. Int J Coal Geol 72:293–314. doi:10.1016/j.coal.2007.02.006

    Article  CAS  Google Scholar 

  7. Lior N (2008) Energy resources and use the present situation and possible paths to the future. Energy 33:842–857. doi:10.1016/j.energy.2009.06.049

    Article  CAS  Google Scholar 

  8. Muda N, Pin TJ (2012) On prediction of depreciation time of fossil fuel in Malaysia. J Math Stat 8:136–143. doi:10.3844/jmssp.2012.136.143

    Article  Google Scholar 

  9. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. doi:10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  10. Iyer M (2006) High temperature reactive separation process for combined carbon dioxide and sulfur dioxide capture from flue gas and enhanced hydrogen production with in-situ carbon dioxide capture using high reactivity calcium and biomineral sorbents. Electronic thesis or Dissertation Ohio State University https://etd.ohiolink.edu/

  11. Caldeira K (2006) Forests, climate, and silicate rock weathering. J Geochem Explor 88:419–422. doi:10.1016/j.gexplo.2005.08.089

    Article  CAS  Google Scholar 

  12. Bryant E (1997) Climate process and change. Cambridge University Press, Cambridge, p 118

    Google Scholar 

  13. Oreskes N (2004) The scientific consensus on climate change. Science 306:1686. doi:10.1126/science.1103618

    Article  CAS  Google Scholar 

  14. Fan LS (2010) Chemical looping systems for fossil energy conversions. Wiley, Hoboken, New Jersey Chapter 1, p 12

    Google Scholar 

  15. Gupta R (2008) Hydrogen fuel: production, transport and storage. CRC Press, FL. Chapter 1, p 9

    Google Scholar 

  16. Verne J (1874) The mysterious island. Available at http://www.literature-web.net/verne/mysteriousisland

  17. Hoffmann P (1981) The forever fuel: the story of hydrogen. Westview Press, Boulder, CO. Chapter 6, p 164

    Google Scholar 

  18. Krishna RH (2013) Review of research on production methods of hydrogen: future fuel. Eur J Biotechnol Biosci 1:84–93. (http://www.biotechjournal.info/vol1/issue2/pdf/25.1.pdf)

  19. EIA (2025) Annual energy outlook with projections to 2025. Washington

    Google Scholar 

  20. Blazek CF, Biederman RT, Foh SE, Jasionowski W(1992) Underground storage and transmission of hydrogen. In: Proceedings of the third annual us hydrogen meeting. Washington, March 18–20, pp 4–221

    Google Scholar 

  21. Sherif SA, Barbir F, Veziroglu TN (2005) Wind energy and the hydrogen economy—review of the technology. Sol Energy 78:647–660. doi:10.1016/j.solener.2005.01.002

    Article  CAS  Google Scholar 

  22. Penner SS (2006) Steps towards the hydrogen economy. Energy 31:33–43. doi:10.1016/j.energy.2004.04.060

    Article  CAS  Google Scholar 

  23. Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26:185–190. doi:10.1016/S0360-3199(00)00062-8

    Article  CAS  Google Scholar 

  24. Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30:809–819. doi:10.1016/j.ijhydene.2005.02.003

    Article  CAS  Google Scholar 

  25. Edwards PP, Kuznetsov VL, David WIF (2007) Hydrogen Energy. Phil Trans R Soc A 365:1043–1056. doi:10.1098/rsta.2006.1965

    Article  CAS  Google Scholar 

  26. US Department of Energy, Office of Science 2003 Basic research needs for the hydrogen economy. Report of the basic energy sciences workshop on hydrogen production, storage and use, Washington, DC. Available from http://www.sc.doe.gov/bes/reports/list.html

  27. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619. doi:10.1016/S0360-3199(01)00177-X

    Article  CAS  Google Scholar 

  28. Vitart X, Duigou AL, Carles P (2006) Hydrogen production using the sulfur-iodine cycle coupled to a VHTR: an overview. Energy Conv Mgmt 47:2740–2747. doi:10.1016/j.enconman.2006.02.010

    Article  CAS  Google Scholar 

  29. Dincer I, Joshi AS (2013) Solar based hydrogen production systems. Springer, New York. doi:10.1007/978-1-4614-7431-9

  30. Kok K (2009) Nuclear engineering handbook. CRC Press, FL. Chapter 5, p 223

    Google Scholar 

  31. Ozalp N, Epstein M, Kogan A (2010) Cleaner pathways of hydrogen, carbon nano-materials and metals production via solar thermal processing. J Cleaner Prod 18:900–907. doi:10.1016/j.jclepro.2010.01.020

    Article  CAS  Google Scholar 

  32. Dutton AG, Bleijs JAM, Dienhart H, Falchetta M, Hug W, Prischich D, Ruddell AJ (2000) Experience in the design, sizing, economics, and implementation of autonomous wind-powered hydrogen production systems. Int J Hydrogen Energy 25:705–722. doi:10.1016/S0360-3199(99)00098-1

    Article  CAS  Google Scholar 

  33. Ackermann T, Soder L (2000) Wind energy technology and current status: a review. Renew Sust Energy Rev 4:315–374. doi:10.1016/S1364-0321(00)00004-6

    Article  CAS  Google Scholar 

  34. Saur G, Ramsden T (2011) Wind electrolysis: hydrogen cost optimization. Technical report NREL/TP-5600-50408 Contract no. DE-AC36-08GO28308

    Google Scholar 

  35. Melis A (2002) Green Alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27:1217–1228. doi:10.1016/S0360-3199(02)00110-6

    Article  CAS  Google Scholar 

  36. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427. doi:10.1126/science.280.5362.425

    Article  CAS  Google Scholar 

  37. Graetzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  38. Lewis N (2001) Light work with water. Nature 414:589–590. doi:10.1038/414589a

    Article  CAS  Google Scholar 

  39. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974. doi:10.1126/science.1103197

    Article  CAS  Google Scholar 

  40. Bonaquist D (2010) Analysis of CO2 emissions, reductions, and capture for large-scale hydrogen production plants. Praxair white Paper, Oct 2010. www.praxair.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Kumar, S. (2015). Role of Hydrogen in the Energy Sector. In: Clean Hydrogen Production Methods. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-14087-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14087-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14086-5

  • Online ISBN: 978-3-319-14087-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics