Skip to main content

A Deep and Stable Extreme Learning Approach for Classification and Regression

  • Conference paper
Proceedings of ELM-2014 Volume 1

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 3))

Abstract

The random-hidden-node based extreme learning machine (ELM) is a much more generalized cluster of single-hidden-layer feed-forward neural networks (SLFNs) whose hidden layer do not need to be adjusted, and tends to reach both the smallest training error and the smallest norm of output weights. Deep belief networks (DBNs) are probabilistic generative modals composed of simple, unsupervised networks such as restricted Boltzmann machines (RBMs) or auto-encoders, where each sub-network’s hidden layer serves as the visible layer for the next. This paper proposes an approach: DS-ELM (a deep and stable extreme learning machine) that combines a DBN with an ELM. The performance analysis on real-world classification (binary and multi-category) and regression problems shows that DS-ELM tends to achieve a better performance on relatively large datasets (large sample size and high dimension). In most tested cases, DS-ELM’s performance is generally more stable than ELM and DBN in solving classification problems. Moreover, the training time consumption of DS-ELM is comparable to ELM.

This work was supported by grants from China National Natural Science Foundation under Project 613278050 and 61210013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedingsof the 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

    Google Scholar 

  3. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 17(4), 879–892 (2006)

    Article  Google Scholar 

  4. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 513–529 (2012)

    Article  Google Scholar 

  5. Ribeiro, B., Lopes, N.: Extreme Learning Classifier with Deep Concepts. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I. LNCS, vol. 8258, pp. 182–189. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. A.-r. Mohamed, G., Hinton, G.: Understanding how deep belief networks perform acoustic modelling. In: 2012 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 4273–4276. IEEE (2012)

    Google Scholar 

  7. Lopes, N., Ribeiro, B.: Gpumlib: An efficient open-source gpu machine learning library. International Journal of Computer Information Systems and Industrial Management Applications 3, 355–362 (2011)

    Google Scholar 

  8. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational learning with extreme learning machine for big data. IEEE Intelligent Systems (2013)

    Google Scholar 

  9. Huang, G.-B., Chen, L.: Convex incremental extreme earning machine. Neurocomputing 70(16), 3056–3062 (2007)

    Article  Google Scholar 

  10. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)

    Article  Google Scholar 

  11. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for classification. Neurocomputing 74(1), 155–163 (2010)

    Article  Google Scholar 

  12. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics 2(2), 107–122 (2011)

    Article  Google Scholar 

  13. Li, M.-B., Huang, G.-B., Saratchandran, P., Sundararajan, N.: Fully complex extreme learning machine. Neurocomputing 68, 306–314 (2005)

    Article  Google Scholar 

  14. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Computational Intelligence Magazine 5(4), 13–18 (2010)

    Article  Google Scholar 

  16. Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. JOSA A 20(7), 1434–1448 (2003)

    Article  Google Scholar 

  17. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of deep networks. Greedy layer-wise training of deep networks 19, 153 (2007)

    Google Scholar 

  18. Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  19. Wang, G., Hoiem, D., Forsyth, D.: Building text features for object image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1367–1374. IEEE (2009)

    Google Scholar 

  20. Bengio, Y.: Learning deep architectures for AI. Foundations and trends in Machine Learning 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bache, K., Lichman, M.: UCI repository of machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2013), http://archive.ics.uci.edu/ml

    Google Scholar 

  22. Shevade, S.K., Keerthi, S.: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19(17), 2246–2253 (2003)

    Article  Google Scholar 

  23. Duarte, M.F., Hen Hu, Y.: Vehicle classification in distributed sensor networks. Journal of Parallel and Distributed Computing 64(7), 826–838 (2004)

    Article  Google Scholar 

  24. Xing, E.P., Jordan, M.I., Karp, R.M., et al.: Feature selection for high-dimensional genomic microarray data. ICML 1, 601–608 (2001)

    Google Scholar 

  25. Guyon, I., Gunn, S.R., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection challenge. In: NIPS, vol. 4, pp. 545–552 (2004)

    Google Scholar 

  26. Redmond, M., Baveja, A.: A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research 141(3), 660–678 (2002)

    Article  MATH  Google Scholar 

  27. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data. Technical University of Denmark, Palm (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-le Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cao, Ll., Huang, Wb., Sun, Fc. (2015). A Deep and Stable Extreme Learning Approach for Classification and Regression. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, KA. (eds) Proceedings of ELM-2014 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-14063-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14063-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14062-9

  • Online ISBN: 978-3-319-14063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics