Skip to main content

Biohydrogen from Lignocellulosic Wastes

  • Chapter
  • First Online:
Lignocellulose-Based Bioproducts

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 1))

Abstract

Hydrogen has a high potential of being renewable and environmentally friendly alternative for the future energy carriers. Dark fermentative biohydrogen production has been received considerable attention because of the potential utilization of a wide variety of carbohydrate-rich wastes, lower operational costs, higher efficiency, simpler control requirements, and considerable role in waste reduction. Different types of biomasses, e.g., lignocellulosic wastes, have been used as feedstocks for this purpose. Biohydrogen production using dark fermentation can be performed by either pure cultures or anaerobic microbial consortia. The higher efficiency of hydrogen generation through control and reducing by-products is the main advantages of using pure cultures. However, mixed anaerobic consortia are usually preferred because of potential expression of a wide range of hydrolytic activities to enhance substrate utilization especially for complex lignocellulosic compounds, no need to medium sterilization, simpler control and operation, and more robust to changes in the environmental conditions such as pH and temperature. Therefore, anaerobic cultures from different sources have been tested as inocula for hydrogen fermentation from lignocellulosic wastes. However, manipulation and modification of the microbial community of anaerobic cultures toward reducing or even inhibiting the reactions of hydrogen consumption and by-products formation is the primary and necessary step. Moreover, it has been concluded from the literatures that there is no consistent procedure for microbial pretreatment and it should be checked based on the sources of inoculum and types of the substrate. Dark fermentative hydrogen production is influenced by several different factors, including type and source of inoculum, environmental parameters (e.g., temperature, pH, and partial pressure of hydrogen), and metal ions. This chapter reviewed and discussed different basic and applied aspects of biohydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeshahian P, Al-Shorgani NKN, Salih NKM, Shukor H, Kadier A, Hamid AA, Kalil MS (2014) The production of biohydrogen by a novel strain Clostridium sp. YM1 in dark fermentation process. Int J Hydrogen Energy 39(24):12524–12531. doi:10.1016/j.ijhydene.2014.05.081

    Article  Google Scholar 

  • Azbar N, Levin DB (2011) Biohydrogen production from agricultural Agrofood-based resources. In: Moo-Young M (ed) Comprehensive biotechnology (2nd edn). Academic Press, Burlington, pp 629–641. doi:10.1016/B978-0-08-088504-9.00391-3

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energ Rev 31(0):158–173. doi:10.1016/j.rser.2013.11.022

  • Balachandar G, Khanna N, Das D (2013) Chap. 6—Biohydrogen production from organic wastes by dark fermentation. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 103–144. doi:10.1016/B978-0-444-59555-3.00006-4

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133(0):109–117. doi:10.1016/j.biortech.2012.12.168

  • Cao G-L, Guo W-Q, Wang A-J, Zhao L, Xu C-J, Zhao Q-l, Ren N-Q (2012) Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. Int J Hydrogen Energy 37(17):13161–13166. doi:10.1016/j.ijhydene.2012.03.137

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energ Rev 16(3):1462–1476. doi:10.1016/j.rser.2011.11.035

  • Chang ACC, Tu Y-H, Huang M-H, Lay C-H, Lin C-Y (2011) Hydrogen production by the anaerobic fermentation from acid hydrolyzed rice straw hydrolysate. Int J Hydrogen Energy 36(21):14280–14288. doi:10.1016/j.ijhydene.2011.04.142

  • Cheng C-L, Lo Y-C, Lee K-S, Lee D-J, Lin C-Y, Chang J-S (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102(18):8514–8523. doi:10.1016/j.biortech.2011.04.059

  • Cheng J, Xia A, Liu Y, Lin R, Zhou J, Cen K (2012) Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. Int J Hydrogen Energy 37(18):13330–13337. doi:10.1016/j.ijhydene.2012.06.071

  • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy 34:3277–3287

    Article  Google Scholar 

  • Chookaew T, O-Thong S, Prasertsan P (2014) Biohydrogen production from crude glycerol by immobilized Klebsiella sp. TR17 in a UASB reactor and bacterial quantification under non-sterile conditions. Int J Hydrogen Energy 39(18):9580–9587. doi:10.1016/j.ijhydene.2014.04.083

  • Chuang Y-S, Huang C-Y, Lay C-H (2012) Fermentative bioenergy production from distillers grains using mixed microflora. Int J Hydrogen Energy 37:15547–15555

    Article  Google Scholar 

  • Clinton JA, Scott AW (2004) Vision of a hydrogen future. IEEE power energy mag 2:34–56

    Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrogen Energy 34:7349–7357

    Article  Google Scholar 

  • Dong L, Zhenhong Y, Yongming S, Longlong M (2010) Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int J Hydrogen Energy 35:8234–8240

    Article  Google Scholar 

  • Elbeshbishy E (2011) Enhancement of biohydrogen and biomethane production from wastes using ultrasonication. The university of western Ontario, Ontario

    Google Scholar 

  • Faloye FD, Gueguim Kana EB, Schmidt S (2014) Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique—semi pilot scale production assessment. Int J Hydrogen Energy 39(11):5607–5616. doi:10.1016/j.ijhydene.2014.01.163

  • FAO (2007) Food and agriculture organization of the United Nations. Food Outlook: Global Market Analysis, Rome

    Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2014) Evaluation of ultrasonication as a treatment strategy for enhancement of biohydrogen production from complex distillery wastewater and process optimization. Int J Hydrogen Energy 39(19):10041–10050. doi:10.1016/j.ijhydene.2014.04.153

  • Gomez-Romero J, Gonzalez-Garcia A, Chairez I, Torres L, Garcia-Pena EI (2014) Selective adaptation of an anaerobic microbial community: biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int J Hydrogen Energy 39:12541–12550

    Article  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35(19):10660–10673. doi:10.1016/j.ijhydene.2010.03.008

  • Gupta VK, Potumarthi R, O’Donovan A, Kubicek CP, Sharma GD, Tuohy MG (2014) Chapter 2—Bioenergy research: an overview on technological developments and bioresources. In: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 23–47. doi:10.1016/B978-0-444-59561-4.00002-4

  • Hallenbeck P (2012) Chap. 6—Fundamentals of dark hydrogen fermentations: multiple pathways and enzymes. In: Azbar N, Levin DB (eds) State of the art and progress in production of biohydrogen bentham science, pp 94–111

    Google Scholar 

  • Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102(17):7903–7909. doi:10.1016/j.biortech.2011.05.089

  • Kalil MS, Alshiyab HS, Yusoff WMW (2009) Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum. Am J Biochem Biotechnol 4(4):393

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  Google Scholar 

  • Kuan-Yeow S, Duu-Jong L (2013) Chapter 13—Bioreactor and bioprocess design for biohydrogen production. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 317–337

    Google Scholar 

  • Lam MK, lee KT (2013) Chapter 8—Biohydrogen production from algae. In: Pandey A, Jo-Shu C (eds) Biohydrogen. Elsevier, Amsterdam

    Google Scholar 

  • Lee D-J, Show K-Y, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102(18):8393–8402. doi:10.1016/j.biortech.2011.03.041

  • Levin DB, Azbar N (2012) Chapter 1—Introduction: biohydrogen in perspective. In: David BL, Nuri A (eds) State of the art and progress in production of biohydrogen. Bentham Science, pp 3–7

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Article  Google Scholar 

  • Liu Z, Li Q, Zhang C, Wang L, Han B, Li B, Zhang Y, Chen H, Xing X-H (2014) Effects of operating parameters on hydrogen production from raw wet steam-exploded cornstalk and two-stage fermentation potential for biohythane production. Biochem Eng J 90(0):234–238. doi:10.1016/j.bej.2014.06.013

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  Google Scholar 

  • Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrogen Energy 39(14):7496–7507. doi:10.1016/j.ijhydene.2013.08.100

  • Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59–67

    Article  Google Scholar 

  • Mohan SV, Mohanakrishna G, Srikanth S (2013) Chap. 22—biohydrogen production from industrial effluents. In: Pandey A, Jo-Shu C (eds) Biohydrogen. Elsevier, Amsterdam, pp 499–524

    Google Scholar 

  • Mohan SV, Pandey A (2013) Biohydrogen production: an introduction. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 1–24

    Chapter  Google Scholar 

  • Motte J-C, Trably E, Hamelin J, Escudié R, Bonnafous A, Steyer J-P, Bernet N, Delgenes J-P, Dumas C (2014) Total solid content drives hydrogen production through microbial selection during thermophilic fermentation. Bioresour Technol 166:610–615. doi:10.1016/j.biortech.2014.05.078

  • Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach. Bioresour Technol 141(0):212–219. doi:10.1016/j.biortech.2013.03.082

  • Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8581

    Article  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation. Waste Biomass Valor 1:21–39

    Article  Google Scholar 

  • Pandey A, Chang J-S, Hallenbecka PC, Larroche C (2013) Biohydrogen. Elsevier, Amsterdam

    Google Scholar 

  • Reith JH, Wijffels RH, Barten H (2003) Bio-methane and bio-hydrogen. Dutch Biological Hydrogen Foundation, The Netherlands

    Google Scholar 

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060

    Article  Google Scholar 

  • Ren NQ, Guo WQ, Wang XJ (2008) Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrogen Energy 33:4318–4324

    Article  Google Scholar 

  • Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy 38:13172–13191

    Article  Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lin CY, Chang JS, Mao-Hong F (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37:15616–15631

    Article  Google Scholar 

  • Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy 36(13):7460–7478. doi:10.1016/j.ijhydene.2011.03.077

  • Sinha P, Pandey A (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int J Hydrogen Energy 39(14):7518–7525. doi:10.1016/j.ijhydene.2013.08.134

  • Song Z-X, Wang Z-Y, Wu L-Y, Fan Y-T, Hou H-W (2012) Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation. Int J Hydrogen Energy 37:6554–6561

    Article  Google Scholar 

  • Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115(0):714–719. doi:10.1016/j.fuel.2013.07.094

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Tan T, Yu J, Shang F (2011) Biorefinery engineering. In: Moo-Young M (ed) Comprehensive biotechnology (2nd edn). Academic Press, Burlington, pp 815–828. doi:10.1016/B978-0-08-088504-9.00138-0

  • Wang B, Wan W, Wang J (2009) Effect of nitrate concentration on biological hydrogen production by mixed cultures. Front Environ Sci Eng China 3:380–386

    Article  Google Scholar 

  • Wang J, Wan W (2009a) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811

    Article  Google Scholar 

  • Wang J, Wan W (2009b) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34(2):799–811. doi:10.1016/j.ijhydene.2008.11.015

  • Wang J, Wan W (2011) Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge. Biomass Bioenergy 35:3896–3901

    Article  Google Scholar 

  • Wu JHTY, Juan JC (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overwiew, economics, and future prospects of hydrogen usage. Biofeuls, Bioprod Biorefin 7:334–352

    Article  Google Scholar 

  • Yin Y, Hu J, Wang J (2014) Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods. Int J Hydrogen Energy 39(25):13550–13556. doi:10.1016/j.ijhydene.2014.01.145

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66(0):36–56. doi:10.1016/j.compchemeng.2013.11.016

  • Zaborsky OR (1997) Biohydrogen. Plenum Press, United States of America

    Google Scholar 

  • Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31:441–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Zilouei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zilouei, H., Taherdanak, M. (2015). Biohydrogen from Lignocellulosic Wastes. In: Karimi, K. (eds) Lignocellulose-Based Bioproducts. Biofuel and Biorefinery Technologies, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-14033-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14033-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14032-2

  • Online ISBN: 978-3-319-14033-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics