Skip to main content

Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations

  • Chapter

Abstract

The field of nanotechnology has seen tremendous growth over the past decade and has had a measurable impact on all facets of our society, from electronics to medicine. Nevertheless, nanotechnology applications in the agricultural sector are still relatively underdeveloped. Nanotechnology has the potential to provide solutions for fundamental agricultural problems caused by conventional fertilizer management. Through this chapter, we aim to highlight opportunities for the intervention of nanotechnologies in the area of fertilizers and plant nutrition and to provide a snapshot of the current state of nanotechnology in this area. This chapter will explore three themes in nanotechnology implementation for fertilizers: nanofertilizer inputs, nanoscale additives that influence plant growth and health, and nanoscale coatings/host materials for fertilizers. This chapter will also explore the potential directions that nanotechnology in fertilizers may take in the next 5–10 years as well as the potential pitfalls that should be examined and avoided.

Keywords

  • Silica Nanoparticles
  • Fertilizer Treatment
  • Fertilizer Input
  • Fertilizer Product
  • Vigor Index

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-14024-7_2
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-14024-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6

Notes

  1. 1.

    Note that this paper has since been retracted for copyright reasons.

References

  • Aleksandrovich DN (2002) Method of producing granular organomineral nano-fertilizers. RU 2479559

    Google Scholar 

  • Aleksandrovich MI, Evich GRR, Janovich MAG (2011) Fertilizer and method of wheat treatment with this fertilizer. RU 2411712

    Google Scholar 

  • Anil MK, Ramana MR (2013) A composition and a process for preparation of nano bio-nutrient processed organic spray. WO 2013118131

    Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584

    CrossRef  CAS  Google Scholar 

  • Barati A (2010) Nanocomposite superabsorbent containing fertilizer nutrients used in agriculture. US 20100139347

    Google Scholar 

  • Bell RW, Dell B (2008) Micronutrients for sustainable food, feed, fibre and bioenergy production. International Fertilizer Industry Association Publisher, Paris

    Google Scholar 

  • Bi D, Li F, Liu Y, Yin X (2010a) Specific nutrient fertilizers for honey peach rich in organic Se. CN 101786913

    Google Scholar 

  • Bi D, Jin L, Li F, Liu Y, Yin X (2010b) Se-rich nutrient composition specific for strawberry. CN 101781144

    Google Scholar 

  • Bi D, Liu S, Liu Y, Yin X (2010c) Preparation of selenium-rich Chinese cabbage using Selenium nanoparticle containing nutrient. CN 101734971

    Google Scholar 

  • Bignozzi CA, Dissette V, Della Valle RA (NM Tech Nanomaterials Microdevice Technology Ltd) (2008) Products comprising an anti-microbial composition based on titanium dioxide nanoparticles. WO 2008/135093

    Google Scholar 

  • Biris AS, Khodakovskaya M (2011). Method of using carbon nanotubes to affect seed germination and plant growth. WO 2011059507

    Google Scholar 

  • Boday DJ, Kuczynski J, Meyer RE (2013) Agrochemical microcapsules adapted to rupture in a magnetic field. US 20130109565

    Google Scholar 

  • Brown P, Rathjen A, Graham R, Tribe D (1990) Rare earth elements in biological systems. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 13. Elsevier, Amsterdam, pp 423–452

    Google Scholar 

  • Cai D (2007) Controlled release of low-cost environment friendly nitrogenous fertilizer. CN 101041606

    Google Scholar 

  • Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Tox Chem 27:1922–1931

    CrossRef  CAS  Google Scholar 

  • Cao F, Mou S, Li M (2007a) Palygorskite material-based sustained-release nitrogen fertilizer. CN 1978396

    Google Scholar 

  • Cao F, Mou S, Li M (2007b) Palygorskite material-based sustained-release composite fertilizer. CN 1978399

    Google Scholar 

  • Cao F, Mou S, Li M (2007c) Palygorskite material-based sustained-release potash fertilizer. CN 10127832

    Google Scholar 

  • Cao F, Mou S, Li M (2007d) Palygorskite material-based sustained-release phosphorus fertilizer. CN 1978397

    Google Scholar 

  • Caro JC, Henkel P, Weinholdt M (2006) Thermoplastics in growth accelerators, giving increased yields and quality of plants in agriculture. DE 101004051354

    Google Scholar 

  • Carpita N, Sabulase D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:144–147

    CrossRef  Google Scholar 

  • Chahal AS, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Dikpati A, Gawli P (2012) Amorphous nanoparticles for solubility enhancement. J Adv Pharm Sci 2:167–178

    Google Scholar 

  • Chen F (2002) Agrochemical compositions containing agrochemicals absorbed on porous nanoparticles for controlled release. CN 1343520

    Google Scholar 

  • Cheng G, Cheng J (2010) Nanosize selenium-rich compound fertilizer for promoting longevity of house flowering plants. CN 101851136

    Google Scholar 

  • Choi KS (2010) Liquid composition for promoting plant growth containing TiO2 nanoparticles. US 20100160161

    Google Scholar 

  • Choi KS, Lee SH, Choi HS (2003) The liquid composition for promoting plant growth, which includes nanoparticle titanium dioxide. WIPO PCT WO03/059070

    Google Scholar 

  • De Geest BG, Sanders NN, Sukhorukov GB, Demeestera J, De Smedt SC (2007) Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 36:636–649

    CrossRef  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    CrossRef  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Brit DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    CrossRef  CAS  Google Scholar 

  • Ding Y, Wu Q (2005) Preparation of seed coating agent containing nanoparticles with low toxicity and high efficiency. CN 1701665

    Google Scholar 

  • Dong J, He A, Han Z, Wang L (2006) Polyolefin/alkyltriphenylphosphonium halide-modified montmorillonite nanocomposite, its preparation and application. CN 1789318

    Google Scholar 

  • Du Y (2007) Method for manufacturing fertilizer cementing agent by using paper-making black liquor. CN 101081795A

    Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in the Helianthus annuus. Span J Agric Res 8:S103–S108

    CrossRef  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiol Plant 132:491–502

    CrossRef  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    CrossRef  CAS  Google Scholar 

  • El-Kereti MA, El-Feky SA, Khater MS, Osman YA, El-Sherbini SA (2014) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5:69–81

    Google Scholar 

  • ETC Group (2004) Down on the farm: the impact of nano-scale technologies on food and agriculture

    Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    CrossRef  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441

    CrossRef  Google Scholar 

  • Gai G, Zhao F, Liu C, Yang Y (2011) Granular fertilizer coated with mineral micro/nanopowder. CN 201883046

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    CrossRef  CAS  Google Scholar 

  • Gillman GP, Noble AD (2001) Fertilizer, soil treatment agent and soil-less medium. WO 2001055057

    Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    CrossRef  CAS  Google Scholar 

  • Gould-Fogerite S, Mannino RJ, Margolis D (2003) Cochleate delivery vehicles: applications to gene therapy. Drug Deliv Technol 3:40–47

    CAS  Google Scholar 

  • Guo Y (2007) Long-acting added-acting additive for composite fertilizer. CN 1919804A

    Google Scholar 

  • He Z (2008) Method for producing amino acid active fertilizer. CN 101177360

    Google Scholar 

  • He M, Lin Y, Zhao J, ZhuW, Wang X (2009) Zinc oxide suspension as agricultural trace element fertilizer. CN 101357856

    Google Scholar 

  • Hong SY, Shim MK (2006) Method for preparing plant tonic comprising nano-iron aqueous solution. KR 2006112752

    Google Scholar 

  • Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats. In: Shamin N (ed) Ch. 5. Sustainable nanotechnology and the environment: advances and achievements. ACS symposium series, pp 73–90

    Google Scholar 

  • Hossain KZ, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids Surf B 62:42–50

    CrossRef  CAS  Google Scholar 

  • Hu Q, Li H, Guo F, Lu C, Xin Z, Zhu S, Li F, Fang Y (2008) Method for preparing nanoscale Se-rich green tea with antitumor activity. CN 101142951

    Google Scholar 

  • Hussein MZ, Zainal X, Yahaya AH, Foo DWV (2002) Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite. J Control Release 85:417–427

    CrossRef  Google Scholar 

  • Inada T, Kasai Y, Wakabayashi T, Shibata H, Isobe A (2007) Ammonium magnesium phosphate-containing nanocomposite and its manufacture. JP 2007153705

    Google Scholar 

  • Johnson GV, Raun WR (2003) Nitrogen response index as a guide to fertilizer management. J Plant Nutr 26:249–262

    CrossRef  CAS  Google Scholar 

  • Jongeijk E, Verheesen P (2011), Specific delivery of agrochemicals. US 20110244011

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    CrossRef  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 27:2128–2135

    CrossRef  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    CrossRef  CAS  Google Scholar 

  • Kim WH (2005) Liquid complex fertilizer which contains nanosilver and allicin and preparation method thereof to provide antibacterial effects thus to increase crop production. KR 2005000265

    Google Scholar 

  • Kim HS (2007) Liquid Composition containing nanometer colloidal silica and used for promoting healthy growth of plant. KR 2007077961

    Google Scholar 

  • Kim HK (2011) Method for cultivating high-quality high-functionality fruit and vegetables. KR 1120635

    Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka AN, Karunaratne V (2011a) Compositions for sustained release of agricultural macronutrients and process thereof. WO 2011151724

    Google Scholar 

  • Kottegoda N, Munaweera I, Samaranayake L, Gunasekara S, De Alwis A, Karunaratne V, Madusanka AN (2011b) Cellulose based sustained release macronutrient composition for fertilizer application. US 20110296887

    Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011c) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kottegoda N, Priyadharshana G, Sandaruwan C, Dahanayake D, Gunasekara S, Amaratunga AJG, Karunaratne V (2013) Composition and method for sustained release of agricultural macronutrients. US 20130098125

    Google Scholar 

  • Lee JH, Lee EM, Kim GJ, Jeong IH, Cho YG (2007) Gardening Fertilizer containing stevia extract and minerals and preparation method thereof by using fermented stevia extract as penetration accelerator for functional material. KR 1020060046653

    Google Scholar 

  • Lewis G (2013) Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion. WO 2013110202

    Google Scholar 

  • Li F (2007) Selenium potassium phosphate composite and applications thereof. CN 101016218

    Google Scholar 

  • Li H, Guan Y (2011) Foliar fertilizer containing carbon nanoparticles for plants under stress conditions. CN 102030595

    Google Scholar 

  • Li Y, Yin G, Li L, Liu Z (2002) Preparation of Ximaxi controlled-release fertilizer. CN 1349958

    Google Scholar 

  • Li F, Pham H, Anderson DJ (2010) Methods to produce polymer nanoparticles and formulations of agricultural active ingredients. WO 2010035118

    Google Scholar 

  • Liang R, Liu M (2007) Preparation of poly(acrylic acid-co-acrylamide)/kaolin and release kinetics of urea from it. J Appl Polym Sci 106:3007–3015

    CrossRef  CAS  Google Scholar 

  • Lin C (2008) Novel sustained-release nanosized fertilizer and production method therefor. CN 101225010

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CrossRef  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    CrossRef  CAS  Google Scholar 

  • Lin BS, Fang LJ, Qiao SC, Yu M (2004a) Application of TMS organic fertilizer in spruce seedlings. Beihua Daxue Xuebao, Ziran Kexueban 5:553–556

    CAS  Google Scholar 

  • Lin BS, Diao SQ, Li CH, Fang LJ, Qiao SC, Yu M (2004b) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140

    CrossRef  CAS  Google Scholar 

  • Liu Y, Wangquan T (2012) Special fertilizer for rapeseed base fertilizer. CN 102816021

    Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang F, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 39:1598–1604

    CAS  Google Scholar 

  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    CrossRef  CAS  Google Scholar 

  • Liu Y, Tang W, Yang H (2012a) Special fertilizer for soybean. CN 102815993

    Google Scholar 

  • Liu Y, Wangquan T, Hongbing Y (2012b) Special sweet potato fertilizer and preparation method of special sweet potato fertilizer. CN 102826934

    Google Scholar 

  • Liu Y, Wangquan T, Hongbin Y (2012c) Special fertilizer for spring corn base fertilizer. CN 102826922

    Google Scholar 

  • Liu Y, Wangquan T, Hongbin Y (2012d) Special fertilizer for cotton base fertilizer. CN 102816023

    Google Scholar 

  • Mastronardi E, Foster A, Zhang X, DeRosa MC (2014) Smart materials based on DNA aptamers: taking aptasensing to the next level. Sensors 14:3156–3171

    CrossRef  Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    CrossRef  CAS  Google Scholar 

  • Miller G, Senjen R (2008) Out of the laboratory and on to our plates: nanotechnology in food and agriculture. Friends of the Earth

    Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    CrossRef  CAS  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    CrossRef  CAS  Google Scholar 

  • Ni J (2003) Biological organic compound liquid nanofertilizer and preparing process thereof. CN 1451636

    Google Scholar 

  • Nilanjan D (2013) Plant nutrient coated nanoparticles and methods for their preparation and use. WO 2013121244

    Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Gonçalves FAF, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    CrossRef  CAS  Google Scholar 

  • Nonomura AM (2006) Compositions and methods for anti-transpiration in plants. US 20060142158

    Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exper Nanosci 5:488–497

    CrossRef  CAS  Google Scholar 

  • Park M, Kim CY, Lee DH, Choi CL, Choi J, Lee SR, Choy JH (2004) Intercalation of magnesium-urea complex into swelling clay. J Phys Chem Solids 65:409–412

    CrossRef  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamya V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    CrossRef  CAS  Google Scholar 

  • Price RR, Wagner A (2008) A method for treating agricultural crops using materials associated with tubular carriers. US 2008194406

    Google Scholar 

  • Răcuciu M, Creangă DE (2007) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52:395–402

    Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    CrossRef  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    CrossRef  CAS  Google Scholar 

  • Schroder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:822–831

    CrossRef  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    CrossRef  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    CrossRef  CAS  Google Scholar 

  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364

    CrossRef  CAS  Google Scholar 

  • Sultan Y, DeRosa MC (2011) Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small 7:1219–1226

    CrossRef  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294–1308

    CrossRef  Google Scholar 

  • Tan J, Ding L, Zhang J (2008) Nanoscale biological/organic/inorganic compound fertilizer. CN 101186540

    Google Scholar 

  • Tian F, An L, Wu D (2012) Method for improving fresh blueberry by biological selenium nano-fertilizer. CN 10274248249

    Google Scholar 

  • Tong C, Xiao S, Wang B, Xiao X, Zheng Y, Xue C, Wang Q, Liu X (2008) Preparation and application of chitooligosaccharides-selenium nanoparticles for plant nutrition regulator. Hunan Daxue Xuebao, Ziran Kexueban 35:60–64

    CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, K W (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nano 2:295–300

    CrossRef  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    CrossRef  CAS  Google Scholar 

  • Um KM, Jong Tae H (2010) Method for cultivating grape containing gold nanoparticles and the grape containing gold nanoparticles. KR 897582

    Google Scholar 

  • Vempati RK (2008) Complete plant growth medium comprised of naturally occurring zeolite coated with nanophase iron oxide and dosed with nutrients. US 20080116141

    Google Scholar 

  • Wan Z (2004) Nanosized urea and its production process. CN 1485303

    Google Scholar 

  • Wang H (2008) Method for preparing bio-organic fertilizer by use of peat with high fertilizer efficiency. CN 101255072

    Google Scholar 

  • Wang A, Zhang J (2007) Method for preparing nanocomposite aquasorb with function of slow release fertilizer. CN 101077843

    Google Scholar 

  • Wang J, Yang J, Liu X, Fan Y, Wu Y, Zheng W, Zhao D (2005a) Application of nanometer rare earth oxide for promoting plant growth. CN 1686957

    Google Scholar 

  • Wang J, Yang J, Liu X, Fan Y, Wu Y, Zheng W, Zhao D (2005b) Application of nanometer rare earth hydroxide for promoting plant growth. CN 1686955

    Google Scholar 

  • Wang J, Yang J, Liu X, Fan Y, Wu Y, Zheng W, Zhao D (2005c) Application of nanometer rare earth precipitated salt for promoting plant growth. CN 1686956

    Google Scholar 

  • Wang Y, Min J, Shen Y (2008a) Nanometer biofertilizer containing bacteria. CN 101113120

    Google Scholar 

  • Wang Z, Zhang X, Mu Y (2008b) Effects of rare-earth fertilizers on the emission of nitrous oxide from agricultural soils in China. Atmos Environ 42:3882–3887

    CrossRef  CAS  Google Scholar 

  • Watts-Williams SJ, Turney TW, Patti AF, Cavagnaro TR (2014) Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant Soil 376:165–175

    CrossRef  CAS  Google Scholar 

  • Wei H, Ji C (2003) Nanometer soil amendment and its application in field crops. CN 1388206

    Google Scholar 

  • Wei Z, Wang Y, He C, Wei W, Cui J (2011) Phosphorus fertilizer comprising nano-hydroxyapatite and its preparation process. CN 101973791

    Google Scholar 

  • Wei L, Li J, Zhu C (2012) Nano-selenium amino acid foliar fertilizer and preparation method of the same. CN 102391053

    Google Scholar 

  • Wu X (2004a) Nanopeat composite and its products and application. CN 1470600

    Google Scholar 

  • Wu X (2004b) Nano-sized active organic humate fertilizer and its preparation process. CN 1472176

    Google Scholar 

  • Wu X (2005) Nano controlled-release fertilizer and its preparation. CN 1594239

    Google Scholar 

  • Wu C, Wu Q (2010) Nitrogen fertilizer-specific functional slow-release agent. CN 101628838

    Google Scholar 

  • Wu D-H, Wu D-F, Zhang M, Sun T-B (2008) Study on the effect of sprinkle of nano-Se organic preparation on Se content in apples. Weilaian Yuansu Yu Jiankang Yanjiu 25:29–30

    Google Scholar 

  • Xia G, Dong L, Zhu J, Zhang Y (2013) Method for preparing silver nanoparticle and method for promoting seed germination and growth and development of seedling of cucumber with the silver nanoparticle. CN 103302307

    Google Scholar 

  • Xie J, Liu J (2012) Nano-carbon synergism compound fertilizer for tobacco and preparation method thereof. CN 102718584

    Google Scholar 

  • Xuebin Y, Ying L, Wen T (2009) The preparation of a nano long-acting selenium fertilizer. WO 2009111986

    Google Scholar 

  • Yang L, Wang J (2008) Controlled-release fertilizer additive. CN 101298404

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    CrossRef  CAS  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    CrossRef  CAS  Google Scholar 

  • Yang L, Tang W, Yang H (2012) Compound fertilizer specific for peanut and preparation method thereof. CN 102815991

    Google Scholar 

  • Yavitz EQ (2006) Plant protection, feeding, and watering by foliar application of nanoscale particles. US 2006014645

    Google Scholar 

  • Yoon JH (2005) Non-toxic pesticides for crops containing nano silver and growth-promoting material, and use thereof. KR 1020050037282

    Google Scholar 

  • Yu EQ (2005a) Nano diatomite and zeolite ceramic crystal powder for use as a plant growth medium. US 6942714

    Google Scholar 

  • Yu H (2005b) Cultivation technology for production of ziziphus jujuba fruit rich in selenium. CN 1672490

    Google Scholar 

  • Zambryski P (2004) Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. J Cell Biol 162:165–168

    CrossRef  Google Scholar 

  • Zhang F (2004) Manufacture of nano olefin-starch blend as fertilizer packaging film or granulating binder. CN 1546543

    Google Scholar 

  • Zhang Z, Chen J (2012) Method for preparation of compound organic fertilizer containing nano-carbon and sulfate radical organic fertilizer. CN 102816003

    Google Scholar 

  • Zhang Z, Liu J (2010) Synergistic fertilizer containing nanometer carbon and rare earth and its preparation. CN 101633590

    Google Scholar 

  • Zhang F, Wang Y (2004) Nanometer scale multifunctional sand-fixing water-loss reducer from weathered coal and waste plastics using microemulsification process. CN 1546607

    Google Scholar 

  • Zhang F, Yao Q (2005) Production process for blended high concentration sustained release fertilizer. CN 1654439

    Google Scholar 

  • Zhang F, Shi C, Zhao B (2003a) Production technique of coating cement for nanosulfonated lignin mixture fertilizer. CN 1417173A

    Google Scholar 

  • Zhang F, Zhao B, Zhang J, Shi C, He X, Zhang J, Wang R (2003b) Technical process for producing clay nanoparticle-polyester blended polymer as binder for encapsulating fertilizer. CN 1414033

    Google Scholar 

  • Zhang F, Zhang J, Zhang J, Zhao B, He X, Yao Q, Yang J, Shi C (2003c) Production of nanometer humic acids-polymer composite and its application in agriculture. CN 1390877

    Google Scholar 

  • Zhang F, Shi C, Wang Y, Zhang J, Wang R (2005a) Production of sustained/controlled release fertilizer used for greenhouse tomato. CN 1654445

    Google Scholar 

  • Zhang F, Wang Y, Zhang J, Yao Q, Liu X, Xiao Q (2005b) Preparation of nano-micro paraffin wax/kaolin mixture for film coating agent. CN 1635027

    Google Scholar 

  • Zhang F, Wang Y, Zhang J (2005c) Production process for mixing polymer of nano-subnano grade marsh dregs-gangue compound. CN 1560191A

    Google Scholar 

  • Zhang F, Yao C, Wang Y, Zhang J, Liu X, Xiao Q, Feng Z (2005d) Preparation of polymeric mixture from waste polystyrene foam and useful for fertilizer adhesive or capsules. CN 1631952

    Google Scholar 

  • Zhang F, Yao Q, Wang Y, Zhang J (2005e) Preparation method of cementing and film-forming agent for fertilizer from nanoparticle-submicron particles of mixed polymer of polyvinyl alcohol. CN 1609078

    Google Scholar 

  • Zhang F, Liu X, Xiao Q, Wang Y, Zhang J (2006a) Effects of slow/controlled release fertilizer cemented and coated by nano-materials on crops. I. Characteristics of nano-composites with plant nutrients. Nanoscience 1:90–95

    Google Scholar 

  • Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006b) Effects of slow/controlled release fertilizer cemented and coated by nano-materials on biology. II. Effect of slow/controlled release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26

    CAS  Google Scholar 

  • Zhang X, Chabot D, Sultan Y, Monreal C, DeRosa MC (2013) Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS Appl Mater Interfaces 3:5500–5507

    CrossRef  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    CrossRef  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    CrossRef  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    CrossRef  CAS  Google Scholar 

  • Zuo J (2007) Method for manufacturing nanoscale compound fertilizer by using nanomaterial and MgO–rich seawater. CN 1919803

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. DeRosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mastronardi, E., Tsae, P., Zhang, X., Monreal, C., DeRosa, M.C. (2015). Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (eds) Nanotechnologies in Food and Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-14024-7_2

Download citation