Skip to main content

Perspectives in Nanocomposites for the Slow and Controlled Release of Agrochemicals: Fertilizers and Pesticides

  • Chapter

Abstract

Agrochemical represented mainly by fertilizers and pesticides are vital inputs for agricultural production. However, their conventional application in field is poorly effective, with significant losses due mainly to volatilization and/or lixiviation of soluble agrochemicals. In some cases, the application exceeds two times the optimal quantity, meaning that other undesired consequences take part, such as environmental contamination or production of greenhouse gases. A considerable scientific effort has been made to develop viable systems for the controlled or slow delivery of agrochemicals, in order to adjust the nutrient availability in soil to minimal doses required for pest control or to levels needed by plants. Besides other technologies, the association of soluble materials containing fractions of minerals with very high surface area has shown to be an effective way for the optimization of agrochemical application, where the cation-exchange capacity (CEC) of minerals plays an important role. Then, the association of mineral structures (high CEC clays and layered double hydroxides, etc.) opens a new research field in the tailoring of nanocomposites, where the properties of minerals, polymers, and additives that are associated with agrochemicals (considered as the active moiety of the nanocomposites) can produce novel properties to the release control. Therefore, this chapter reviews the underlying principles in controlled or slow release of agrochemicals, the fundamentals of key technologies, and the current perspectives in the production of new materials, comparing their potential with conventional materials regularly produced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarnio T, Martikainen PJ (1995) Mineralization of C and N and nitrification in Scots pine forest soil treated with nitrogen fertilizers containing different proportions of urea and its slow-releasing derivative, ureaformaldehyde. Soil Biol Biochem 27:1325–1331

    CAS  Google Scholar 

  • Achor DS, Albrigo LG (2005) Biuret toxicity symptoms in citrus leaves mimics cell senescence rather than nutritional deficiency chlorosis. J Am Soc Hortic Sci 130(5):667–673

    Google Scholar 

  • Albrigo LG (2002) Foliar uptake of N-P-K sources and urea biuret tolerance in citrus. In: International symposium on foliar nutrition of perennial fruit plants acta horticulturae, vol 594, pp 627–633. Available: http://www.actahort.org/books/594/594_84.htm. Accessed Feb 2014

  • ANDA (2013) Mercado de fertilizantes – Janeiro/Novembro 2013. Available: http://www.anda.org.br/estatistica/comentarios.pdf. Accessed Jan 2014

  • Aouada FA, Mattoso LHC, Longo E (2011) New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind Crop Prod 34:1502–1508

    CAS  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Google Scholar 

  • Bajpai AK, Giri A (2003) Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr Polym 53:271–279

    CAS  Google Scholar 

  • Barrer RM (1981) Zeolites and their synthesis. Zeolites 1:130–140

    CAS  Google Scholar 

  • Bartz JK, Jones RL (1983) Availability of nitrogen to sudangrass from ammonium-saturated clinoptilolite. Soil Sci Soc Am J 47:259–262

    CAS  Google Scholar 

  • Benke MB, Indraratne SP, Hao X, Chang C, Goh TB (2008) Trace element changes in soil after long-term cattle manure applications. J Environ Qual 37:798–807

    CAS  Google Scholar 

  • Bernardi ACC, Mota EP, Cardoso RD, Monte MBM, Oliveira PPA (2014) Ammonia volatilization from soil, dry-matter yield, and nitrogen levels of Italian ryegrass. Commun Soil Sci Plant Anal 45(2):153–162

    CAS  Google Scholar 

  • Bessac F, Hoyau S (2013) Pesticide interaction with environmentally important cations: a theoretical study of atrazine in interaction with two Ca2+ cations. Comput Theor Chem 1022:6–13

    CAS  Google Scholar 

  • Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439

    CAS  Google Scholar 

  • Boswell CC, Swanney B, Owers WR (1988) Sulfur/sodium bentonite prills as sulfur fertilizers. 2. Effect of sulfur- sodium bentonite ratios on the availability of sulfur to pasture plants in the field. Fertil Res 15:33–45

    CAS  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    CAS  Google Scholar 

  • Byrnes BH (2000) Liquid fertilizers and nitrogen solutions. In: International Fertilizer Development Center: fertilizer manual. Kluwer Academic, Alabama, pp 20–44

    Google Scholar 

  • Campese GM, Tambourgi EB, Guilherme MR, de Moura MR, Muniz EC, Youssef EY (2007) Resistência mecânica de hidrogéis termo-sensíveis constituídos de alginato-Ca+2/PNIPAAm, tipo semi-ipn. Quim Nova 30:1649–1652

    CAS  Google Scholar 

  • Canle ML, Rodríguez S, Vázquez LFR, Santaballa JA, Steenken S (2001) First stages of photodegradation of the urea herbicides Fenuron, Monuron and Diuron. J Mol Struct 565:133–139

    Google Scholar 

  • Cartes P, Jara AA, Demanet R, de la Mora LM (2009) Urease activity and nitrogen mineralization kinetics as affected by temperature and urea input rate in southern Chilean Andisols. J Soil Sci Plant Nutr 9:69–82

    Google Scholar 

  • Cavigelli MA (2005) Book review – agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Ecology 86:2548–2550

    Google Scholar 

  • Céspedes FF, García SP, Sánchez M, Vand Fernández Pérez M (2013) Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil. Chemosphere 92(8):918–924

    Google Scholar 

  • Chen L, Xie Z, Zhuang X, Chen X, Jing X (2008) Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydr Polym 72(2):342–348

    CAS  Google Scholar 

  • Chevillard A, Angellier-Coussy H, Guillard V, Ontard N, Gastaldi E (2012) Controlling pesticide release via structuring agropolymer and nanoclays based materials. J Hazard Mater 205:32–39

    Google Scholar 

  • Chien S, Prochnow L, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322

    CAS  Google Scholar 

  • Chivrac F, Pollet E, Dole P, Avérous L (2010) Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79:941–947

    CAS  Google Scholar 

  • Costa do Nascimento CA, Vitti GC, de Abreu L, Luz PHC, Mendes FL (2013) Ammonia volatilization from coated urea forms. Rev Bras Ciênc Solo 37:1057–1063

    CAS  Google Scholar 

  • Costa MME, Cabral-Albuquerque ECM, Alves TLM, Pinto JC, Fialho RL (2013) Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. J Agric Food Chem 61:9984–9991

    CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    CAS  Google Scholar 

  • El Bahri Z, Taverdet JL (2005) Optimization of an herbicide release from ethylcellulose microspheres. Polym Bull 54:353–363

    Google Scholar 

  • Enas MA (2013) Hydrogel: preparation, characterization, and applications. J Adv Res (in press)

    Google Scholar 

  • FAO (Food and Agriculture Organization) (2003) In: Bruinsma J (ed) World agriculture: towards 2015/2030 an FAO perspective. Earthscan Publications Ltd., Rome, 97 pp

    Google Scholar 

  • Ferguson GA, Pepper IL (1987) Ammonium retention in sand amended with clinoptilolite. Soil Sci Soc Am J 51:231–234

    CAS  Google Scholar 

  • Fernández-Pérez M, Flores-Céspedes F, González-Pradas E, Villafranca-Sánchez M, Pérez-García S, Garrido-Herrera FJ (2004) Use of activated bentonites in controlled-release formulations of atrazine. J Agric Food Chem 52:3888–3893

    Google Scholar 

  • Finck A (1992) World fertilizer use manual. International Fertilizer Industry Association (IFA), Paris, 632 pp

    Google Scholar 

  • Gagnon B, Ziadi N, Grant C (2012) Urea fertilizer forms affect grain corn yield and nitrogen use efficiency. Can J Soil Sci 92:341–351

    CAS  Google Scholar 

  • Gardolinski JE, Wypych F, Cantão MP (2001) Esfoliação e hidratação da caulinita após intercalação com ureia. Quim Nova 24(6):761–767

    CAS  Google Scholar 

  • GeoHive (2012) Population statistics. Available: http://www.geohive.com/. Accessed June 2012

  • Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032

    CAS  Google Scholar 

  • Giroto AS, Campos A, Pereira EI, Cruz CTC, Marconcini JM, Ribeiro C (2014) Study of a nanocomposite starch–clay for slow-release of herbicides: evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control. J Appl Polym Sci 121(23):41188

    Google Scholar 

  • Glossary of Soil Science Terms (2008) Soil Science Society of America, SSSA, 92 pp. Available: https://www.soils.org/publications/soils-glossary. Accessed Feb 2014

  • Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    CAS  Google Scholar 

  • Gruener JE, Ming DW, Henderson KE, Galindo C (2003) Common ion effects in zeoponic substrates: wheat plant growth experiment. Micropor Mesopor Mater 61:223–230

    CAS  Google Scholar 

  • Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44:4206–4211

    CAS  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2009) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Google Scholar 

  • Hanafi MM, Eltaib SM, Ahmad MB (2000) Physical and chemical characteristics of controlled release compound fertiliser. Eur Polym J 36:2081–2088

    CAS  Google Scholar 

  • He ZL, Calvert DV, Alva AK, Li YC, Banks DJ (2002) Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil 247:253–260

    CAS  Google Scholar 

  • Henderson JC, Hensley DL (1986) Efficacy of a hydrophilic gel as a transplant aid. Hortic Sci 21:991–992

    CAS  Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis – contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pp. Available: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html. Accessed Feb 2014

  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756

    CAS  Google Scholar 

  • Kaihara S, Matsumura S, Fisher J (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68:67–73

    CAS  Google Scholar 

  • Kasgoz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19:838–845

    CAS  Google Scholar 

  • Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567

    CAS  Google Scholar 

  • Khimji I, Kelly EY, Helwa Y, Hoang M, Liu JW (2013) Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64(3):292–298

    CAS  Google Scholar 

  • Kim KS, Park M, Choi CL, Lee DH, Seo YJ, Kim CY, Kim JS, Yun S-IN, Ro H-M, Komarneni S (2011) Suppression of NH3 and N2O emissions by massive urea intercalation in montmorillonite. J Soils Sediments 11:416–422

    CAS  Google Scholar 

  • Kondaveeti S, Prasad K, Siddhanta AK (2013) Functional modification of agarose: a facile synthesis of a fluorescent agarose-tryptophan based hydrogel. Carbohydr Polym 97:165–171

    CAS  Google Scholar 

  • Konta J (1995) Clay and man: clay raw materials in the service of man. Appl Clay Sci 10:275–335

    CAS  Google Scholar 

  • Kool DM, Dolfing J, Wrage N, Van Groenigen JW (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem 43:174–178

    CAS  Google Scholar 

  • Korndörfer GH, Datnoff LE (1995) Adubação com silício: uma alternativa no controle de doenças da cana-de-açúcar e arroz. Inf Agron 70:1–3

    Google Scholar 

  • Kuenen JG, Robertson LA (1988) Ecology of nitrification and denitrification. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Syndicate of the University of Cambridge, Cambridge, pp 1–30

    Google Scholar 

  • Lamont GP, O’Connell MA (1987) Shelf-life of bedding plants as influenced by potting media and hydrogels. Sci Hortic 31:141–149

    CAS  Google Scholar 

  • Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219

    CAS  Google Scholar 

  • Leone G, Delfini M, Di Cocco MR, Borioni A, Barbucci R (2008) The applicability of an amidated polysaccharide hydrogel as a cartilage substitute: structural and rheological characterization. Carbohydr Res 343:317–327

    CAS  Google Scholar 

  • Lewis RJ (1997) Sr. Hawley’s condensed chemical dictionary, 13th edn. Wiley, New York, 578 pp

    Google Scholar 

  • Li J, Lu J, Li Y (2009) Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112:261–268

    CAS  Google Scholar 

  • Li J, Zhuang X, Font O, Moreno N, Vallejo VR, Querol X, Tobias A (2014) Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. J Hazard Mater 265:242–252

    CAS  Google Scholar 

  • Liang R, Liu M (2006) Preparation and properties of a double-coated slow release and water-retention urea fertilizer. J Agric Food Chem 54:1392–1398

    CAS  Google Scholar 

  • Liu Y, Zhu M, Liu X, Zhang W, Sun B, Chen Y, Adler H (2006) High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer 47:1–5

    CAS  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    CAS  Google Scholar 

  • Lopes AS, Guilherme LRG (2000) Uso Eficiente de Fertilizantes e Corretivos Agrícolas: Aspectos Agronômicos. 3 ed. Associação Nacional para Difusão de Adubos, São Paulo, 72 pp

    Google Scholar 

  • Luna FJ, Schuchardt U (1999) Argilas pilarizadas – uma introdução. Quim Nova 22:104–109

    CAS  Google Scholar 

  • Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228

    CAS  Google Scholar 

  • Mackown CT, Tucker TC (1985) Ammonium nitrogen movement in a coarse-textured soil amended with zeolite. Soil Sci Soc Am J 49:235–238

    CAS  Google Scholar 

  • Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crop Prod 44:705–711

    CAS  Google Scholar 

  • Mcgilloway RL, Weaver RW, Ming DW, Gruener JE (2003) Nitrification in a Zeoponic substrate. Plant Soil 256:371–378

    CAS  Google Scholar 

  • Mignoni ML, Petkowicz DI, Machado NRCF, Pergher SBC (2008) Synthesis of mordenite using kaolin as Si and Al source. Appl Clay Sci 41:99–104

    CAS  Google Scholar 

  • Mikkelsen RL (1990) Biuret in urea fertilizer. Fertil Res 26:311–318

    CAS  Google Scholar 

  • Mikkelsen RL, Behel AD, Williams HM (1993) Addition of gel-forming hydrophilic polymers to nitrogen fertilizer solutions. Fertil Res 36:55–61

    CAS  Google Scholar 

  • Ming DW, Mumpton FA (1989) Zeolites in soils. In: Dixon JB, Wedd SB (eds) Minerals in soils environments, 2nd edn, SSSA Book Series No. 1. Soil Science Society of America, Madison, pp 873–909

    Google Scholar 

  • Mitchell BS (2004) An introduction to materials engineering and science: for chemical and materials engineers. Wiley-Interscience, New Jersey, 968 pp

    Google Scholar 

  • Mora J, Lara F (2000) Nitrogen metabolism: an overview. In: Sanchez-Esquivel S (ed) Nitrogen source control of microbial processes. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Mortvedt J, Murphy LS, Follett RH (1999) Fertilizer technology and application. Meister Publ., Ohio, 199 pp

    Google Scholar 

  • Muro-Suñé N, Gani R, Bell G, Shirley I (2005) Predictive property models for use in design of controlled release of pesticides. Fluid Phase Equilib 228:127–133

    Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    CAS  Google Scholar 

  • Nascimento M, Loureiro FEL (2004) Série de estudos e documentos – Fertilizantes e sustentabilidade: O potássio na Agricultura Brasileira. Available: http://mineralis.cetem.gov.br/bitstream/handle/cetem/579/sed-61.pdf?sequence=1. Accessed March 2014

  • Ni B, Liu M, Leu S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175

    CAS  Google Scholar 

  • Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58:185–189

    CAS  Google Scholar 

  • Nissen J (1994) Uso de hidrogeles en la produccion de frambuesas (Rubusidaeus) delsur de Chile. Agro Sur 22:160–165

    Google Scholar 

  • Ojijo V, Ray SS (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589

    CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    CAS  Google Scholar 

  • Pereira EI, Minussi FB, Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J Agric Food Chem 60:5267–5272

    CAS  Google Scholar 

  • Pergher SBC, Sprung R (2005) Pilarização de uma argila brasileira com poliidroxications de alumínio: preparação, caracterização e propriedades catalíticas. Quim Nova 28:777–782

    CAS  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Google Scholar 

  • Rehakova M, Cuvanova S, Dzivak M, Rimar J, Gaval’Ova Z (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr Opin Solid State Mater Sci 8:397–404

    CAS  Google Scholar 

  • Resende AV de (2002) Agricultura e qualidade da água: Contaminação da água por nitrato. Embrapa Cerrado, Planaltina, 28 pp

    Google Scholar 

  • Roy D, Cambre JN, Brent SS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(12):278–301

    CAS  Google Scholar 

  • Saggar S, Singh J, Giltrap DL, Zaman M, Luo J, Rollo M, Kim DG, Rys G, Van Der Weerden TJ (2013) Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory: New Zealand as a case study. Sci Total Environ 465:136–146

    CAS  Google Scholar 

  • Saik RD (1995) The evolution of a sulphur bentonite fertilizer: one company’s perspective. Sulphur Agric 19:74–77

    Google Scholar 

  • Santos PS (1989) In: Blucher E (ed) Ciência e Tecnologia de Argilas. Edgard Blücher Ltda, São Paulo, 408 pp

    Google Scholar 

  • Sayed H, Kirkwood RC, Graham NB (1991) The effects of a hydrogel polymer on the growth of certain horticultural crops under saline conditions. J Exp Bot 42:891–899

    Google Scholar 

  • Serrano-Silva N, Luna-Guido M, Fernández-Luqueno F, Marsch R, Dendooven L (2011) Emission of greenhouse gases from an agricultural soil amended with urea: a laboratory study. Appl Soil Ecol 47:92–97

    Google Scholar 

  • Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49

    CAS  Google Scholar 

  • Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469

    CAS  Google Scholar 

  • Singh B, Sharma DK, Kumar R, Gupta A (2009) Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl Clay Sci 45:76–82

    CAS  Google Scholar 

  • Singh A, Sharma PK, Garg VK, Garg G (2010) Hydrogels: a review. Int J Pharm Sci Rev Res 4:97–105

    Google Scholar 

  • Singh J, Kunhikrishnan A, Bolan NS, Saggar S (2013) Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56–63

    CAS  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266

    CAS  Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87

    Google Scholar 

  • Sopenã F, Cabrera A, Maqueda C, Morillo E (2007) Ethylcellulose formulations for controlled release of the herbicide alachlor in a sandy soil. J Agric Food Chem 55:8200–8205

    Google Scholar 

  • Sorbara L, Jones L, Williams-Lyn D (2009) Contact lens induced papillary conjunctivitis with silicone hydrogel lenses. Cont Lens Anterior Eye 32:93–96

    CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biol Biochem 4:479–487

    CAS  Google Scholar 

  • Takashi L, Hatsumi T, Makoto M, Takashi I, Takehiko G, Shuji S (2007) Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842–850

    Google Scholar 

  • Tao S, Liu J, Jin K, Qiu X, Zhang Y, Ren X, Hu S (2011) Preparation and characterization of triple polymer-coated controlled-release urea with water-retention property and enhanced durability. J Appl Polym Sci 120:2103–2111

    CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers, 4th edn. Macmillan Publishing Company, New York, 754 pp

    Google Scholar 

  • Torres JD (2007) Nanosílica modificada com ácido carboxílico para liberação controlada de herbicidas. Dissertation, Universidade de Brasília, Brasília

    Google Scholar 

  • Trenkel ME (2010) Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association (IFA), Paris, 163 pp

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2011) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2009. Available: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2011-Complete_Report.pdf. Accessed Feb 2014

  • Victoria RL, Piccolo MC, Vargas AAT (1992) O ciclo do nitrogênio. In: Cardoso EJBN, Tsai SM, Neve MCP (eds) Microbiologia do Solo. SBCS, Campinas, pp 105–119

    Google Scholar 

  • Voroney P, Derry D (2008) Origin and distribution of nitrogen in soil. In: Schepers JS, Run WR (eds) Nitrogen in agricultural systems. Agronomy monograph, vol 49, 3rd edn. American Society of Agronomy, Madison, pp 1–30

    Google Scholar 

  • Wallace A (1987) Anionic polyacrylamide treatment of soil improves seedling emergence and growth. Hortic Sci 22:951

    CAS  Google Scholar 

  • Wang C, Xing X, Han X (2004) Advances in study of factors affecting soil N mineralization in grassland ecosystems. Chin J Appl Ecol 15:2184–2188

    CAS  Google Scholar 

  • Wang J, Zhou X, Xiao H (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754

    CAS  Google Scholar 

  • Wienhold BJ, Gish TJ (1994) Chemical properties influencing rate of release of starch encapsulated herbicides: implications for modifying environmental fate. Chemosphere 28:1035–1046

    CAS  Google Scholar 

  • Willingham JE, Coffey DL (1981) Influence of hydrophilic amended soil on growth of tomato transplants. HortScience 16(3):289–289

    Google Scholar 

  • Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    CAS  Google Scholar 

  • Yan Y, Hou H, Ren T, Xu Y, Wang Q, Xu W (2013) Utilization of environmental waste cyanobacteria as a pesticide carrier: studies on controlled release and photostability of avermectin. Colloid Surf B 102:341–347

    CAS  Google Scholar 

  • Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15

    CAS  Google Scholar 

  • Yang Y, Tong Z, Geng Y, Li Y, Zhang M (2013) Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. J Agric Food Chem 61:8166–8174

    CAS  Google Scholar 

  • Yi JZ, Zhang LM (2008) Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide /clay hybrid hydrogels. Bioresour Technol 99:2182–2186

    CAS  Google Scholar 

  • Yoshunari E, Furukawa H, Horie K (2005) Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide) gels and semi-IPN gels. Polymer 46:7741–7748

    Google Scholar 

  • Yumei Y, Xiang S, Pixin W (2009) Fabrication and characterization of microstructured and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field. Eur Polym J 45:309–315

    Google Scholar 

  • Zhang L, Zhou Y, Wang Y (2006) Novel hydrogel composite for the removal of water-soluble cationic dye. J Chem Technol Biotechnol 81:799–804

    CAS  Google Scholar 

  • Zhang L, Ramsaywack S, Fenniri H, Webster TJ (2009) Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Biomaterials 14:1353–1364

    Google Scholar 

  • Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H (2011) Preparation of collagen–chondroitin sulfate hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 84:118–125

    CAS  Google Scholar 

  • Zhang Q, Zhang T, He T, Chen L (2014) Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl Clay Sci 90:1–5

    CAS  Google Scholar 

  • Zhao B, Dong S, Zhang J, Liu P (2013) Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS One 8:2678–2684

    Google Scholar 

  • Zhou C, Wu Q, Lei T, Negulescu I (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, CAPES, FAPESP, FINEP, and Rede Agronano-Embrapa for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caue Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pereira, E.I. et al. (2015). Perspectives in Nanocomposites for the Slow and Controlled Release of Agrochemicals: Fertilizers and Pesticides. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (eds) Nanotechnologies in Food and Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-14024-7_11

Download citation

Publish with us

Policies and ethics