Future Strategies for the Treatment of Depression

  • Clara GrossoEmail author


Despite almost 60 years of intensive research, depression still constitutes a huge economic and social burden worldwide. The reasons which led to this scenario as well as the strategies to overcome it are pointed out by several researchers from different fields of neuroscience and psychiatry: (1) low bioavailability and inefficacy of the current antidepressant drugs and the need for effective drug delivery systems, (2) the lack of appropriate biomarkers and the lack of a comprehensive knowledge of the genetic factors involved in the predisposition of depression, (3) the lack of suitable animal models to study treatment-resistant depression, and (4) the urgent need for a personalized medicine to treat depression patients.

This chapter aims, thus, at thinking about what we have learned from the past, what failed, and what has been achieved, in order to rethink the treatment of depression for the future.


Drug delivery systems Pharmacogenomics Personalized medicine Treatment-resistant depression 


  1. Adamec R, Bartoszyk GD, Burton P. Effects of systemic injections of vilazodone, a selective serotonin reuptake inhibitor and serotonin 1 A receptor agonist, on anxiety induced by predator stress in rats. Eur J Pharmacol. 2004;504:65–77.PubMedCrossRefGoogle Scholar
  2. Agin HV. Tranylcypromine in depression: a clinical report. Am J Psychiatr. 1960;117:150–1.PubMedCrossRefGoogle Scholar
  3. Alda M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry. 2015;20:661–70.PubMedCrossRefGoogle Scholar
  4. Aldridge M, Oakley N. Side-effects of tranylcypromine. Lancet. 1961;278:932.CrossRefGoogle Scholar
  5. Alvarez E, Perez V, Dragheim M, Loft H, Artigas F. A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int J Neuropsychopharmacol. 2012;15:589–600.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Artigas F. Selective serotonin/noradrenal reuptake inhibitors (SNRIs). CNS Drugs. 1995;4:79–89.CrossRefGoogle Scholar
  7. Azima H. Imipramine (Tofranil): a new drug for the depressed. Can Med Assoc J. 1959;80:535–40.PubMedPubMedCentralGoogle Scholar
  8. Azima H, Vispo RH. Imipramine; a potent new anti-depressant compound. Am J Psychiatr. 1958;115:245–6.PubMedCrossRefGoogle Scholar
  9. Baldwin DS, Loft H, Florea I. Lu AA21004, a multimodal psychotropic agent, in the prevention of relapse in adult patients with generalized anxiety disorder. Int Clin Psychopharmacol. 2012;27:197–207.PubMedCrossRefGoogle Scholar
  10. Banasr M, Soumier A, Hery M, Mocaër E, Daszuta A. Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry. 2006;59:1087–96.PubMedCrossRefGoogle Scholar
  11. Barden N, Shink E, Labbé M, Vacher R, Rochford J, Mocaër E. Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29:908–16.CrossRefGoogle Scholar
  12. Barsa JA, Sauders JC. Amitriptyline (Elavil), a new antidepressant. Am J Psychiatr. 1961;117:739–40.PubMedCrossRefGoogle Scholar
  13. Bartoszyk GD, Hegenbart R, Ziegler H. EMD 68843, a serotonin reuptake inhibitor with selective presynaptic 5-HT(1A) receptor agonistic properties. Eur J Pharmacol. 1997;322:147–53.PubMedCrossRefGoogle Scholar
  14. Benkert O, Laakmann G, Ott L, Strauss A, Zimmer R. Effect of zimelidine (H 102/09) in depressive patients. Arzneimittelforschung. 1977;27:2421–3.PubMedGoogle Scholar
  15. Bertaina-Anglade V, Drieu La Rochelle C, Boyer PA, Mocaër E. Antidepressant-like effects of agomelatine (S 20098) in the learned helplessness model. Behav Pharmacol. 2006;17:703–13.PubMedCrossRefGoogle Scholar
  16. Bertelsen A, Harvald B, Hauge M. A Danish twin study of manic-depressive disorders. Br J Psychiatry. 1977;130:330–51.PubMedCrossRefGoogle Scholar
  17. Bień E, Gruca P, Galoch Z, Papp M. Evidence for antidepressant- and anxiolytic-like activities of melatonin and agomelatine in animal models. Pharmacol Rep. 2002;54:185.Google Scholar
  18. Bierut L, Heath AC, Bucholz KK, et al. Major depressive disorder in a community-based twin sample: are there different genetic and environmental contributions for men and women? Arch Gen Psychiatry. 1999;56:557–63.PubMedCrossRefGoogle Scholar
  19. Bijl MJ, Luijendijk HJ, van den Berg JF, Visser LE, van Schaik RHN, Hofman A, Vulto AG, van Gelder T, Tiemeier H, Stricker BH. Association between the CYP2D6*4 polymorphism and depression or anxiety in the elderly. Pharmacogenomics. 2009;10:541–7.PubMedCrossRefGoogle Scholar
  20. Blanchinet J, Léger JM, Vallat JN. Use of clomipramine in the treatment of depressive states. Bord Med. 1970;3:1163–4. passim.PubMedGoogle Scholar
  21. Bourin M, Mocaër E, Porsolt R. Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatry Neurosci. 2004;29:126–33.PubMedPubMedCentralGoogle Scholar
  22. Bymaster FP, Dreshfield-Ahmad LJ, Threlkeld PG, Shaw JL, Thompson L, Nelson DL, Hemrick-Luecke SK, Wong DT. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology. 2001;25:871–80.PubMedCrossRefGoogle Scholar
  23. Cade JF. Lithium salts in the treatment of psychotic excitement. Med J Aust. 1949;2:349–52.PubMedGoogle Scholar
  24. Cantu TG, Korek JS, Romanoski AJ. Focus on venlafaxine: a new option for the treatment of depression. Hosp Formul. 1994;29:25–33.Google Scholar
  25. Carlsson A, Corrodi H, Fuxe K, Hökfelt T. Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-ϵ-ethyl-metatyramine. Eur J Pharmacol. 1969;5(4):357–66.PubMedCrossRefGoogle Scholar
  26. Castaner J, Hopkins SJ. Bupropion. Drugs Future. 1978;3:723–7.CrossRefGoogle Scholar
  27. Christensen AV, Fjalland B, Pedersen V, Danneskiold-Samsøe P, Svendsen O. Pharmacology of a new phthaline (Lu 10-171), with specific 5-HT uptake inhibiting properties. Eur J Pharmacol. 1977;41:153–62.PubMedCrossRefGoogle Scholar
  28. Cocchiara G, Battaglia R, Pevarello P, Benedetti MS. Comparison of the disposition and of the metabolic pattern of Reboxetine, a new antidepressant, in the rat, dog, monkey and man. Eur J Drug Metab Pharmacokinet. 1991;16:231–9.PubMedCrossRefGoogle Scholar
  29. Cooper BR, Hester TJ, Maxwell RA. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo. J Pharmacol Exp Ther. 1980;215:127–34.PubMedGoogle Scholar
  30. Courousse T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F, Le Guisquet AM, Gardier AM, Schinkel AH, Giros B, Gautron S. Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3βsignaling. Mol Psychiatry. 2015;20:889–900.PubMedCrossRefGoogle Scholar
  31. Cox J, Moore G, Evans L. Zimelidine: a new antidepressant? Prog Neuropsychopharmacol. 1978;2:379–84.CrossRefGoogle Scholar
  32. Crane GE. Iproniazid (marsilid) phosphate, a therapeutic agent for mental disorders and debilitating diseases. Psychiatr Res Rep. 1957;8:142–52.Google Scholar
  33. Cuijpers P. Personalized treatment for functional outcome in depression. Medicographia. 2014;36:476–81.Google Scholar
  34. Cuijpers P, van Straten A, Schuurmans J, van Oppen P, Hollon SD, Andersson G. Psychotherapy for chronic major depression and dysthymia: a meta-analysis. Clin Psychol Rev. 2010;30:51–62.PubMedCrossRefGoogle Scholar
  35. Da Prada M, Kettler R, Keller HH, Haefely WE. Neurochemical effects in vitro and in vivo of the antidepressant Ro 11-1163, a specific and short-acting MAO-A inhibitor. Mod Probl Pharmacopsychiatry. 1983;19:231–45.PubMedCrossRefGoogle Scholar
  36. David B, Wolfender J-L, Dias DA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299–315.CrossRefGoogle Scholar
  37. Dawson LA, Watson JM. Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther. 2009;15:107–17.PubMedCrossRefGoogle Scholar
  38. De Paulis T. Drug evaluation: vilazodone—a combined SSRI and 5-HT1A partial agonist for the treatment of depression. IDrugs. 2007;10:193–201.PubMedGoogle Scholar
  39. Den Boer JA, Bosker FJ, Meesters Y. Clinical efficacy of agomelatine in depression: the evidence. Int Clin Psychopharmacol. 2006;21:S21–4.CrossRefGoogle Scholar
  40. Dooneief AS, Crane GE. Iproniazid as adjunct in the treatment of debilitated patients with tuberculosis. N Y State J Med. 1957;57:3477–80.PubMedGoogle Scholar
  41. Dostert P, Benedetti MS, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol. 1997;7:S23–35. Scholar
  42. Dunlop E. Depression: treatment of office patients with phenelzine (nardil). R I Med J. 1959;42:656–7. passim.PubMedGoogle Scholar
  43. Dutta A, McKie S, Deakin JFW. Ketamine and other potential glutamate antidepressants. Psychiatry Res. 2015;225:1–13.PubMedCrossRefGoogle Scholar
  44. Fann WE, Schroeder DH, Mehta NB. Clinical trial of bupropion HCl in treatment of depression. Curr Ther Res Clin Exp. 1978;23:222–9.Google Scholar
  45. Feldman PE. Psychotherapy and chemotherapy (amitriptyline) of anergic states. Dis Nerv Syst. 1961;22(5Pt 2):27–31.PubMedGoogle Scholar
  46. Ferris RM, Beaman OJ, Tang FLM, Russell A. Effects of bupropion, a new antidepressant, on CNS receptors. Pharmacologist. 1981;23(3):125.Google Scholar
  47. Findlay JWA, Van Wyck Fleet J, Smith PG, Butz RF, Hinton ML, Blum MR, Schroeder DH. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur J Clin Pharmacol. 1981;21:127–35.PubMedCrossRefGoogle Scholar
  48. Fond G, Macgregor A, Miot S. Nanopsychiatry—the potential role of nanotechnologies in the future of psychiatry: a systematic review. Eur Neuropsychopharmacol. 2013;23:1067–71.PubMedCrossRefGoogle Scholar
  49. Freed H. On the parenteral use of amitriptyline (ElavilMerck): a preliminary report. Am J Psychiatr. 1960;117:455–6.PubMedCrossRefGoogle Scholar
  50. Fuchs E, Simon M, Schmelting B. Pharmacology of a new antidepressant: Benefit of the implication of the melatonergic system. Int Clin Psychopharmacol. 2006;21:S17–20.PubMedCrossRefGoogle Scholar
  51. Fuller RW, Hemrick-Luecke SK, Snoddy HD. Effects of duloxetine, an antidepressant drug candidate, on concentrations of monoamines and their metabolites in rats and mice. J Pharmacol Exp Ther. 1994;269:132–6.PubMedGoogle Scholar
  52. Fuller RW, Perry KW, Molloy BB. Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-n-methyl-3-phenylpropylamine (Lilly 110140). Life Sci. 1974;15:1161–71.PubMedCrossRefGoogle Scholar
  53. Garcia X, Escribano E, Colom H, Domenech J, Queralt J. Tricyclic antidepressants-loaded biodegradable plga nanoparticles: in vitro characterization and in vivo analgesic and anti-allodynic effect. Curr Nanosci. 2011;7:345–53.CrossRefGoogle Scholar
  54. Goldstein DJ, Mallinckrodt C, Lu Y, Demitrack MA. Duloxetine in the treatment of major depressive disorder: a double-blind clinical trial. J Clin Psychiatr. 2002;63:225–31.CrossRefGoogle Scholar
  55. Gordon MN, Muller CD, Sherman KA, Morgan DG, Azzaro AJ, Wecker L. Oral versus transdermal selegiline: antidepressant-like activity in rats. Pharmacol Biochem Behav. 1999;63(3):501–6.PubMedCrossRefGoogle Scholar
  56. Gottlieb P, Wandall T, Fredericson Overo K. Initial, clinical trial of a new, specific 5-HT reuptake inhibitor, citalopram (Lu 10-171). Acta Psychiatr Scand. 1980;62:236–44.PubMedCrossRefGoogle Scholar
  57. Grau M. Moclobemide. Drugs Future. 1983;8:14–126.CrossRefGoogle Scholar
  58. Halaris AE, Stern W, Harto-Truax N. Clinical efficacy of the new antidepressant bupropion (Wellbutrin®). Psychopharmacol Bull. 1981;17:140–2.PubMedGoogle Scholar
  59. Hamilton SP. The promise of psychiatric pharmacogenomics. Biol Psychiatry. 2015;77(1):29–35.PubMedCrossRefGoogle Scholar
  60. Hanoun N, Mocaër E, Boyer PA, Hamon M, Lanfumey L. Differential effects of the novel antidepressant agomelatine (S 20098) versus fluoxetine on 5-HT1A receptors in the rat brain. Neuropharmacology. 2004;47:515–26.PubMedCrossRefGoogle Scholar
  61. Haque S, Md S, Fazil M, Kumar M, Sahni JK, Ali J, Baboota S. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym. 2012;89:72–9.PubMedCrossRefGoogle Scholar
  62. Haque S, Md S, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res. 2014;48:1–12.PubMedCrossRefGoogle Scholar
  63. Hayley S, Litteljohn D. Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci. 2013;7.Google Scholar
  64. Hyttel J. Neurochemical characterization of a new potent and selective serotonin uptake inhibitor: Lu 10-171. Psychopharmacology (Berl). 1977;51:225–33.CrossRefGoogle Scholar
  65. Ingelman-Sundberg M, Persson A, Jukic MM. Polymorphic expression of CYP2C19 and CYP2D6 in the developing and adult human brain causing variability in cognition, risk for depression and suicide: the search for the endogenous substrates. Pharmacogenomics. 2014;15(15):1841–4.PubMedCrossRefGoogle Scholar
  66. Janssen MJA. Mirtazepine (Remeron®). Pharm Weekbl. 1995;130:355–7.Google Scholar
  67. Jaworska A, Malek K. A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. J Colloid Interface Sci. 2014;431:117–24.PubMedCrossRefGoogle Scholar
  68. Kaminsky BM, Bostwick JR, Guthrie SK. Alternate routes of administration of antidepressant and antipsychotic medications. Ann Pharmacother. 2015;49(7):808–17.PubMedCrossRefGoogle Scholar
  69. Kasahara T, Ishigooka J, Nagata E, Murasaki M, Miura S. Long-lasting inhibition of 5-HT uptake of platelets in subjects treated by duloxetine, a potential antidepressant. Jpn J Psychopharmacol. 1996;16:25–31.Google Scholar
  70. Kasper S, McEwen BS. Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs. 2008;22:15–26.PubMedCrossRefGoogle Scholar
  71. Katona C, Hansen T, Olsen CK. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol. 2012;27:215–23.PubMedCrossRefGoogle Scholar
  72. Katz RJ, Sibel M. Animal model of depression: tests of three structurally and pharmacologically novel antidepressant compounds. Pharmacol Biochem Behav. 1982;16:973–7.PubMedCrossRefGoogle Scholar
  73. Kendler KS, Neale MC, Kessler RC, Heath AC, Lj E. The clinical characteristics of major depression as indices of the familial risk to illness. Br J Psychiatry. 1994;165:66–72.PubMedCrossRefGoogle Scholar
  74. Kendler KS, Gardner CO, Prescott CA. Clinical characteristics of major depression that predict risk of depression in relatives. Arch Gen Psychiatry. 1999;56:322–7.PubMedCrossRefGoogle Scholar
  75. Kendler KS, Kuhn JW, Prescott CA. Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med. 2004;34:1475–82.PubMedCrossRefGoogle Scholar
  76. Kendler KS, Prescott CA. A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry. 1999;56:39–44.PubMedCrossRefGoogle Scholar
  77. Kendler KS, Thornton LM, Gardner CO. Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatr. 2000;157:1243–51.PubMedCrossRefGoogle Scholar
  78. Kendler KS, Thornton LM, Gardner CO. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am J Psychiatr. 2001;158:582–6.PubMedCrossRefGoogle Scholar
  79. Kennedy SH. Agomelatine: an antidepressant with a novel mechanism of action. Future Neurol. 2007;2:145–51.CrossRefGoogle Scholar
  80. Khan A. Vilazodone, a novel dual-acting serotonergic antidepressant for managing major depression. Expert Opin Investig Drugs. 2009;18:1753–64.PubMedCrossRefGoogle Scholar
  81. Khan A, Fabre LF, Rudolph R. Venlafaxine in depressed outpatients. Psychopharmacol Bull. 1991;27:141–4.PubMedGoogle Scholar
  82. Kihara T, Ikeda M. Effects of duloxetine, a new serotonin and norepinephrine uptake inhibitor, on extracellular monoamine levels in rat frontal cortex. J Pharmacol Exp Therapeut. 1995;272:177–83.Google Scholar
  83. King PD. Phenelzine and ECT in the treatment of depressions. Am J Psychiatr. 1959;116:64–5.PubMedCrossRefGoogle Scholar
  84. Korn A, Eichler HG, Fischbach R, Gasic S. Moclobemide, a new reversible MAO inhibitor—interaction with tyramine and tricyclic antidepressants in healthy volunteers and depressive patients. Psychopharmacology (Berl). 1986;88:153–7.CrossRefGoogle Scholar
  85. Kragh-Sørensen P, Overø KF, Petersen OL, Jensen K, Parnas W. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol. 1981;48:53–60.CrossRefGoogle Scholar
  86. Kuhn R. The treatment of depressive states with g 22355 (imipramine hydrochloride). Am J Psychiatr. 1958;115:459–64.PubMedCrossRefGoogle Scholar
  87. Kung S, Li X. The clinical use of pharmacogenomic testing in treatment-resistant depression. Prim Psychiatr. 2010;17:46–51.Google Scholar
  88. Kupfer DJ. Depression and associated sleep disturbances: patient benefits with agomelatine. Eur Neuropsychopharmacol. 2006;16:S639–43.CrossRefGoogle Scholar
  89. Landgraf R, Wigger A. High vs low anxiety-related behavior rats: an animal model of extremes in trait anxiety. Behav Genet. 2002;32:301–14.PubMedCrossRefGoogle Scholar
  90. Lapidus KAB, Soleimani L, Murrough JW. Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat. 2013;9:1101–12.PubMedPubMedCentralGoogle Scholar
  91. Larsen JK, Mikkelsen PL. Moclobemide and clomipramine in the treatment of depression. A randomized clinical trial. Acta Psychiatr Scand. 1984;70:254–60.PubMedCrossRefGoogle Scholar
  92. Laughren TP, Gobburu J, Temple RJ, Unger EF, Bhattaram A, Dinh PV, Fossom L, Hung HMJ, Klimek V, Lee JE, Levin RL, Lindberg CY, Mathis M, Rosloff BN, Wang SJ, Wang Y, Yang P, Yu B, Zhang H, Zhang L, Zineh I. Vilazodone: clinical basis for the US Food and Drug Administration’s approval of a new antidepressant. J Clin Psychiatry. 2011;72:1166–73.PubMedCrossRefGoogle Scholar
  93. Lee KC, Chen JJ. Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr Dis Treat. 2007;3:527–37.PubMedPubMedCentralGoogle Scholar
  94. Lehmann HE, Cahn CH, De Verteuil RL. The treatment of depressive conditions with imipramine (G 22355). Can Psychiatr Assoc J. 1958;3:155–64.PubMedGoogle Scholar
  95. Lemere F. Tranylcypromine (parnate) a new monoamine oxidase inhibitor. Am J Psychiatr. 1960;117:249.PubMedCrossRefGoogle Scholar
  96. Levinson DF. The genetics of depression: a review. Biol Psychiatry. 2006;60:84–92.PubMedCrossRefGoogle Scholar
  97. Li X, Sundquist J, Sundquist K. Age-specific familial risks of depression: a nation-wide epidemiological study from Sweden. J Psychiatr Res. 2008;42:808–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Loomer HP, Saunders JC, Kline NS. A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep. 1957;8:129–41.Google Scholar
  99. Lundquist G. Treatment of endogenous depressions with iproniazid. Acta Psychiatr Scand. 1959;34:90.CrossRefGoogle Scholar
  100. Lyons MJ, Eisen SA, Goldberg J, et al. A registry-based twin study of depression in men. Arch Gen Psychiatry. 1998;55:468–72.PubMedCrossRefGoogle Scholar
  101. Mann AM, Macpherson AS. Clinical experience with imipramine (G22355) in the treatment of depression. Can Psychiatr Assoc J. 1959;4:38–47.PubMedGoogle Scholar
  102. Mann JJ, Aarons SF, Wilner PJ, Keilp JG, Sweeney JA, Pearlstein T, Frances AJ, Kocsis JH, Brown RP. A controlled study of the antidepressant efficacy and side effects of (−)-deprenyl. Arch Gen Psychiatry. 1989;46:45–50.PubMedCrossRefGoogle Scholar
  103. Martínez J, Pérez S, Oficialdegui AM, Heras B, Orús L, Villanueva H, Palop JA, Roca J, Mourelle M, Bosch A, Del Castillo JC, Lasheras B, Tordera R, Del Río J, Monge A. New 3-[4-(aryl)piperazin-1-yl]-1-(benzo[b]thiophen-3-yl)propane derivatives with dual action at 5-HT1A serotonin receptors and serotonin transporter as a new class of antidepressants. Eur J Med Chem. 2001;36:55–61.PubMedCrossRefGoogle Scholar
  104. McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry. 2010;15:237–49.PubMedPubMedCentralCrossRefGoogle Scholar
  105. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A. THe heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003;60:497–502.PubMedCrossRefGoogle Scholar
  106. Mealy NE, Bayés M. Vilazodone hydrochloride. Drugs Future. 2004;29:976.Google Scholar
  107. Mennini T, Mocaer E, Garattini S. Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1987;336:478–82.PubMedCrossRefGoogle Scholar
  108. Millan MJ, Brocco M, Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology (Berl). 2005;177:1–12.CrossRefGoogle Scholar
  109. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Therapeut. 2003;306:954–64.CrossRefGoogle Scholar
  110. Millan MJ, Goodwin GM, Hamon M, Meyer-Lindenberg A, Ögren SO. 60 years of advances in neuropsychopharmacology for improving brain health, renewed hope for progress. Eur Neuropsychopharmacol. 2015a;25:591–8.PubMedCrossRefGoogle Scholar
  111. Millan MJ, Goodwin GM, Meyer-Lindenberg A, Ove Ögren S. Learning from the past and looking to the future: emerging perspectives for improving the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 2015b;25:599–656.PubMedCrossRefGoogle Scholar
  112. Mocaer E, Rettori MC, Kamoun A. Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol. 1988;11:S32–42.PubMedGoogle Scholar
  113. Montgomery SA, Loft H, Sánchez C, Reines EH, Papp M. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol. 2001;88:282–6.PubMedCrossRefGoogle Scholar
  114. Mørk A, Pehrson A, Brennum LT, Møller Nielsen S, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sánchez C, Fischer CW, Liebenberg N, Wegener G, Bundgaard C, Hogg S, Bang-Andersen B, Bryan Stensbøl T. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Therapeut. 2012;340:666–75.CrossRefGoogle Scholar
  115. Murck H, Frieboes RM, Antonijevic IA, Steiger A. Distinct temporal pattern of the effects of the combined serotonin-reuptake inhibitor and 5-HT1A agonist EMD 68843 on the sleep EEG in healthy men. Psychopharmacology (Berl). 2001;155:187–92.CrossRefGoogle Scholar
  116. Neuman M. S-1574. Drugs Future. 1979;4:522–4.CrossRefGoogle Scholar
  117. Nnadi CU, Goldberg JF, Malhotra AK. Pharmacogenetics in mood disorder. Curr Opin Psychiatry. 2005;18:33–9.PubMedPubMedCentralGoogle Scholar
  118. Oruch R, Elderbi MA, Khattab HA, Pryme IF, Lund A. Lithium: a review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol. 2014;740:464–73.PubMedCrossRefGoogle Scholar
  119. Overø KF. Preliminary studies of the kinetics of citalopram in man. Eur J Clin Pharmacol. 1978;14:69–73.PubMedCrossRefGoogle Scholar
  120. Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001;50:345–50.PubMedCrossRefGoogle Scholar
  121. Papp M, Gruca P, Boyer PA, Mocaër E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology. 2003;28:694–703.PubMedCrossRefGoogle Scholar
  122. Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13:125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Paul GL. Strategy of outcome research in psychotherapy. J Consult Psychol. 1967;31:109–18.PubMedCrossRefGoogle Scholar
  124. Pento JT. WY-45030. Drugs Future. 1988;13:839–40.CrossRefGoogle Scholar
  125. Pierre Olié J, Kasper S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int J Neuropsychopharmacol. 2007;10:661–73.CrossRefGoogle Scholar
  126. Pitsikas N. Duloxetine Eli Lilly and Co. Curr Opin Investig Drugs. 2000;1:116–21.PubMedGoogle Scholar
  127. Pjrek E, Winkler D, Konstantinidis A, Willeit M, Praschak-Rieder N, Kasper S. Agomelatine in the treatment of seasonal affective disorder. Psychopharmacology (Berl). 2007;190:575–9.CrossRefGoogle Scholar
  128. Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A. Pharmacogenetics of antidepressant response. J Psychiatry Neurosci. 2011;36:87–113.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Prakash DJ, ArulKumar S, Sabesan M. Effect of nanohypericum (hypericum perforatum gold nanoparticles) treatment on restraint stressinduced behavioral and biochemical alteration in male albino mice. Pharmacognosy Res. 2010;2:330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rees L, Davies B. A controlled trial of phenelzine (“Nardil”) in the treatment of severe depressive illness. J Ment Sci. 1961;107:560–6.PubMedGoogle Scholar
  131. Rickels K, Athanasiou M, Reed C. Vilazodone, a novel, dual-acting antidepressant: current status, future promise and potential for individualized treatment of depression. Pers Med. 2009;6:217–24.CrossRefGoogle Scholar
  132. Riva F. FCE-20124. Drugs Future. 1985;10:905–6.CrossRefGoogle Scholar
  133. Riva M, Brunello N, Rovescalli AC, Galimberti R, Carfagna N, Carminati P, Pozzi O, Ricciardi S, Roncucci R, Rossi A, Racagni G. Effect of reboxetine, a new antidepressant drug, on the central noradrenergic system: behavioural and biochemical studies. J Drug Dev. 1989;1:243–53.Google Scholar
  134. Sanchez C, Asin KE, Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther. 2015;145:43–7.PubMedCrossRefGoogle Scholar
  135. Saunders JC, Roukema RW, Kline NS, Bailey SDA. Clinical results with phenelzine. Am J Psychiatr. 1959;116:71–2.PubMedCrossRefGoogle Scholar
  136. Schlappi B. The lack of hepatotoxicity in the rat with the new and reversible MAO-A inhibitor moclobemide in contrast to iproniazid. Arzneimittelforschung. 1985;35:800–3.PubMedGoogle Scholar
  137. Schweizer E, Clary C, Weise C, Rickels K. An open-label, dose-finding study of WY-45,030, a novel bicyclic antidepressant. Psychopharmacol Bull. 1988;24:195–7.PubMedGoogle Scholar
  138. Schweizer E, Weise C, Clary C, Fox I, Rickels K. Placebo-controlled trial of venlafaxine for the treatment of major depression. J Clin Psychopharmacol. 1991;11:233–6.PubMedCrossRefGoogle Scholar
  139. Simon GE, Perlis RH. Personalized medicine for depression: can we match patients with treatments? Am J Psychiatr. 2010;167:1445–55.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Siwers B, Ringberger VA, Tuck JR, Sjoqvist F. Initial clinical trial based on biochemical methodology of zimelidine (a serotonin uptake inhibitor) in depressed patients. Clin Pharmacol Ther. 1977;21:194–200.PubMedCrossRefGoogle Scholar
  141. Sorbera LA, Castaner RM, Castaner J. Duloxetine oxalate: treatment of stress urinary incontinence antidepressant norepinephrine reuptake inhibitor 5-HT reuptake inhibitor. Drugs Future. 2000;25:907–16.CrossRefGoogle Scholar
  142. Sorbera LA, Rabasseda X, Silvestre J, Castañer J. Vilazodone hydrochloride. Drugs Future. 2001a;26:247–52.CrossRefGoogle Scholar
  143. Sorbera LA, Revel L, Martín L, Castañer J. Escitalopram oxalate. Antidepressant, 5-HT reuptake inhibitor. Drugs Future. 2001b;26:115–20.CrossRefGoogle Scholar
  144. Soroko FE, Maxwell RA (1978) The CNS pharmacology of bupropion HCl (wellbatrin ®), a novel antidepressant agent. Fed Proc 37:481.Google Scholar
  145. Soroko FE, Mehta NB, Maxwell RA. Bupropion hydrochloride ((±) α-t-butylamino-3-chloropropiophenone HCl): a novel antidepressant agent. J Pharm Pharmacol. 1977;29:767–70.PubMedCrossRefGoogle Scholar
  146. Stingl J, Viviani R. Polymorphism in CYP2D6 and CYP2C19, members of the cytochrome P450 mixed-function oxidase system, in the metabolism of psychotropic drugs. J Intern Med. 2015;277:167–77.PubMedCrossRefGoogle Scholar
  147. Tang J, Slowing II, Huang Y, Trewyn BG, Hu J, Liu H, Lin VSY. Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine. J Colloid Interface Sci. 2011;360:488–96.PubMedCrossRefGoogle Scholar
  148. Thomas Haskins J, Moyer JA, Muth EA, Sigg EB. DMI, Wy-45,030, Wy-45,881 and ciramadol inhibit locus coeruleus neuronal activity. Eur J Pharmacol. 1985;115:139–46.CrossRefGoogle Scholar
  149. Thor KB, Katofiasc MA. Effects of duloxetine, a combined serotonin and norepinephrine reuptake inhibitor, on central neural control of lower urinary tract function in the chloralose-anesthetized female cat. J Pharmacol Exp Ther. 1995;274:1014–24.PubMedGoogle Scholar
  150. Treit D, Degroot A, Kashluba S, Bartoszyk GD. Systemic EMD 68843 injections reduce anxiety in the shock-probe, but not the plus-maze test. Eur J Pharmacol. 2001;414:245–8.PubMedCrossRefGoogle Scholar
  151. Tuma J, Strubbe JH, Mocaër E, Koolhaas JM. Anxiolytic-like action of the antidepressant agomelatine (S 20098) after a social defeat requires the integrity of the SCN. Eur Neuropsychopharmacol. 2005;15:545–55.PubMedCrossRefGoogle Scholar
  152. Uldam HK, Juhl M, Pedersen H, Dalgaard L. Biosynthesis and identification of an N-oxide/N-glucuronide metabolite and first synthesis of an N-O-glucuronide metabolite of Lu AA21004. Drug Metab Dispos. 2011;39:2264–74.PubMedCrossRefGoogle Scholar
  153. Vaisberg M, Saunders JC. Amitriptyline in the treatment of depressive states (a pilot study). Dis Nerv Syst. 1961;22:334–8.PubMedGoogle Scholar
  154. Valverde O, Torrens M. CB1 receptor-deficient mice as a model for depression. Neuroscience. 2012;204:193–206.PubMedCrossRefGoogle Scholar
  155. Varshosaz J, Zaki MR, Minaiyan M, Banoozadeh J. Preparation, optimization, and screening of the effect of processing variables on agar nanospheres loaded with bupropion HCl by a D-optimal design. BioMed Res Int. 2015;2015: Article ID 571816.Google Scholar
  156. Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res. 2004;150:217–21.PubMedCrossRefGoogle Scholar
  157. Volmat R, Allers G, Vittouris N. Clomipramine or anafranil. Apropos of treatment of 100 depressive states. Encéphale. 1968;57:116–42.PubMedGoogle Scholar
  158. Wilde MI, Benfield P. Tianeptine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depression and coexisting anxiety and depression. Drugs. 1995;49:411–39.PubMedCrossRefGoogle Scholar
  159. Willner P, Belzung C. Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology (Berl). 2015;232:3473–95.CrossRefGoogle Scholar
  160. Wong DT. Duloxetine (LY 248686): an inhibitor of serotonin and noradrenaline uptake and an antidepressant drug candidate. Expert Opin Investig Drugs. 1998;7:1691–9.PubMedCrossRefGoogle Scholar
  161. Wong DT, Bymaster FP, Horng JS, Molloy BB. 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140): a specific inhibitor of serotonin uptake into synaptosomes of rat brain. J Pharmacol Exp Ther. 1974;193(3):804–11.Google Scholar
  162. Wong DT, Bymaster FP, Mayle DA, Reid LR, Krushinski JH, Robertson DW. LY248686, a new inhibitor of serotonin and norepinephrine uptake. Neuropsychopharmacology. 1993;8:23–33.PubMedCrossRefGoogle Scholar
  163. Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, Dong C, Hashimoto K. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.PubMedCrossRefGoogle Scholar
  164. Zitrin A, Thompson DS. EFfects of isonicotinic acid hydrazides on mental status of tuberculous patients. JAMA. 1956;161:204–10.CrossRefGoogle Scholar
  165. Zubenko GS, Maher B, Hughes HB, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet. 2003;123B:1–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of PharmacyUniversity of PortoPortoPortugal

Personalised recommendations