Online Interactions

  • Lilian WengEmail author
  • Filippo Menczer
  • Alessandro Flammini
Part of the Computational Social Sciences book series (CSS)


The ubiquitous use of the Internet has led to the emergence of countless social media and social networking platforms, which generate large-scale digital data records of human behaviors online. Here we review the literature on online interactions, focusing on two main themes: social link formation and online communication. The former is often studied in the context of network evolution models and link prediction or recommendation tasks; the latter combines classic social science theories on collective human behaviors with analysis of big data enabled by advanced computation techniques. But the structure of the network, and the flow of information through the network influence each other. We present a case study to illustrate the connections between social link formation and online communication. Analysis of longitudinal micro-blogging data reveals that people tend to follow others after seeing many messages by them. We believe that research on online interactions will benefit from a deeper understanding of the mutual interactions between the dynamics on the network (communication) and the dynamics of the network (evolution).


Online Social Network Preferential Attachment Network Evolution Link Prediction Online Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Jacob Ratkiewicz, Nicola Perra, Bruno Gonçalves, Carlos Castillo, Francesco Bonchi, and Rossano Schifanella for their contributions to the case study presented in this chapter; Yahoo Labs for making the Meme data available; and the James S. McDonnell Foundation, National Science Foundation, and DARPA grant W911NF-12-1-0037 for partial support of this research.


  1. 1.
    Cho, A. (2009). Ourselves and our interactions: The ultimate physics problem? Science, 325, 406.CrossRefADSGoogle Scholar
  2. 2.
    Kumar, R., Novak, J., & Tomkins, A. (2006). Structure and evolution of online social networks. In Proceedings of SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.Google Scholar
  3. 3.
    Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. -L., Brewer, D., et al. (2009). Computational social science. Science, 323(5915), 721–723.CrossRefGoogle Scholar
  4. 4.
    Vespignani, A. (2009). Predicting the behavior of techno-social systems. Science, 325(5939), 425–428.MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Barabási, A. -L., & Albert, R. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435(7039), 207–211.CrossRefADSGoogle Scholar
  6. 6.
    Albert, R., & Barabási, A. -L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Barrat, A., Barthélemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. 8.
    Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Newman, M. E. J. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. 10.
    Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  11. 11.
    Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.Google Scholar
  12. 12.
    Newman, M. E. J., Watts, D. J., & Strogatz, S. H. (2002). Random graph models of social networks. Proceedings of the National Academy of Sciences (PNAS), 99(Suppl 1), 2566–2572.CrossRefADSGoogle Scholar
  13. 13.
    Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67.MathSciNetGoogle Scholar
  14. 14.
    Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefADSGoogle Scholar
  15. 15.
    Krackhardt, D., & Handcock, M. S. (2007). Heider vs. simmel: Emergent features in dynamic structure. In E. M. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, A. X. Zheng (Eds.), Statistical network analysis: models, issues, and new directions (pp. 14–27). Berlin: Springer.CrossRefGoogle Scholar
  16. 16.
    Leskovec, J., Backstrom, L., Kumar, R., & Tomkins, A. (2008). Microscopic evolution of social networks. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 462–470).Google Scholar
  17. 17.
    Romero, D. M., & Kleinberg, J. (2010). The directed closure process in hybrid social-information networks, with an analysis of link formation on Twitter. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).Google Scholar
  18. 18.
    Perra, N., Gonçalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Time scales and dynamical processes in activity driven networks. Nature Scientific Reports, 2, 469.ADSGoogle Scholar
  19. 19.
    Rocha, L. E. C., Liljeros, F., & Holme, P. (2011). Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Computational Biology, 7(3), e1001109.CrossRefADSGoogle Scholar
  20. 20.
    Barbieri, N., Bonchi, F., & Manco, G. (2013). Cascade-based community detection. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 33–42).Google Scholar
  21. 21.
    Barabási, A. -L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Dorogovtsev, S., Mendes, J., & Samukhin, A. (2000). Structure of growing networks with preferential linking. Physical Review Letters, 85(21), 4633–4636.CrossRefADSGoogle Scholar
  23. 23.
    Fortunato, S., Flammini, A., & Menczer, F. (2006). Scale-free network growth by ranking. Physical Review Letters, 96(21), 218701.CrossRefADSGoogle Scholar
  24. 24.
    Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., & Tomkins, A. (1999). The web as a graph: measurements, models and methods. Lecture Notes in Computer Science (LNCS), 1627, 1–18.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., & Upfal, E. (2000). Stochastic models for the web graph. In Proceedings of IEEE Annual Symposium on Foundations of Computer Science (pp. 57–65).Google Scholar
  26. 26.
    Gallos, L., Rybski, D., Liljeros, F., Havlin, S., & Makse, H. (2012). How people interact in evolving online affiliation networks. Physical Review X, 2(3), 031014.CrossRefADSGoogle Scholar
  27. 27.
    McPherson, M., Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444.CrossRefGoogle Scholar
  28. 28.
    Papadopoulos, F., Kitsak, M., Ángeles Serrano, M., Boguña, M., & Krioukov, D. (2012). Popularity versus similarity in growing networks. Nature, 489(7417), 537–540.CrossRefADSGoogle Scholar
  29. 29.
    Weng, L., & Lento, T. (2014). Topic-based clusters in egocentric networks on Facebook. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).Google Scholar
  30. 30.
    Simmel, G., & Wolff, K. H. (1950). The Sociology of Georg Simmel. New York: The Free Press.Google Scholar
  31. 31.
    Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1.CrossRefGoogle Scholar
  32. 32.
    Clauset, A., Moore, C., & Newman, M. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(1), 98–101.CrossRefADSGoogle Scholar
  33. 33.
    Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., et al. (2013). The role of information diffusion in the evolution of social networks. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 356–364).Google Scholar
  34. 34.
    Cowan, G. (1998). Statistical data analysis. Oxford: Oxford Science Publications.Google Scholar
  35. 35.
    Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Social Networks, 25(3), 211–230.CrossRefGoogle Scholar
  36. 36.
    Liben-Nowell, D., & Kleinberg, J. (2007). The link-prediction problem for social networks. Journal of American Society for Information Science and Technology (JASIST), 58(7), 1019–1031.CrossRefGoogle Scholar
  37. 37.
    Backstrom, L., & Leskovec, J. (2011). Supervised random walks: Predicting and recommending links in social networks. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 635–644). ACM.Google Scholar
  38. 38.
    Lou, T., Tang, J., Hopcroft, J., Fang, Z., & Ding, X. (2010). Learning to predict reciprocity and triadic closure in social networks. ACM Transactions on Embedded Computing Systems, 9(4), 5.Google Scholar
  39. 39.
    Schifanella, R., Barrat, A., Cattuto, C., Markines, B., & Menczer, F. (2010). Folks in folksonomies: social link prediction from shared metadata. In Proceedings of ACM International Conference on Web Search and Data Mining (WSDM) (pp. 271–280).Google Scholar
  40. 40.
    Anderson, R. M., May, R. M., & Anderson, B. (1992). Infectious diseases of humans: Dynamics and control (Vol. 28). Oxford: Oxford University Press.Google Scholar
  41. 41.
    Daley, D. J., & Kendall, D. G. (1964). Epidemics and rumours. Nature, 204(4963), 1118–1119.CrossRefADSGoogle Scholar
  42. 42.
    Goffman, W., & Newill, V. A. (1964). Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204(4955), 225–228.CrossRefADSGoogle Scholar
  43. 43.
    Granovetter, M. S. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1433.CrossRefGoogle Scholar
  44. 44.
    Morris, S. (2000). Contagion. Review of Economic Studies, 67(1), 57–78.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., & Lan, X. (2006). Group formation in large social networks: Membership, growth, and evolution. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 44–54).Google Scholar
  46. 46.
    Bakshy, E., Karrer, B., & Adamic, L. (2009). Social influence and the diffusion of user-created content. In Proceedings of ACM Conference on Electronic Commerce (pp. 325–334).Google Scholar
  47. 47.
    Cosley, D., Huttenlocher, D., Kleinberg, J., Lan, X., & Suri, S. (2010). Sequential influence models in social networks. In Proceedings of AAAI International Conference on Weblogs and Social Media (ICWSM).Google Scholar
  48. 48.
    Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. In Proceedings of International Conference on World Wide Web (WWW).Google Scholar
  49. 49.
    Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.CrossRefADSGoogle Scholar
  50. 50.
    Weng, L., Menczer, F., & Ahn, Y. -Y. (2013). Virality prediction and community structure in social networks. Nature Scientific Reports, 3(2522).Google Scholar
  51. 51.
    Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Nature Scientific Reports, 2(335).Google Scholar
  52. 52.
    Kossinets, G., & Watts, D. J. (2009). Origins of homophily in an evolving social network1. American Journal of Sociology, 115(2), 405–450.CrossRefGoogle Scholar
  53. 53.
    McPherson, J. M., & Smith-Lovin, L. (1987). Homophily in voluntary organizations: Status distance and the composition of face-to-face groups. American Sociological Review, 52(3), 370–379.CrossRefGoogle Scholar
  54. 54.
    Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of Sciences (PNAS), 106(51), 21544–21549.CrossRefADSGoogle Scholar
  55. 55.
    Şimşek, O., & Jensen, D. (2008). Navigating networks by using homophily and degree. Proceedings of the National Academy of Sciences (PNAS), 105(35), 12758–12762.CrossRefADSGoogle Scholar
  56. 56.
    Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., & Suri, S. (2008). Feedback effects between similarity and social influence in online communities. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 160–168).Google Scholar
  57. 57.
    Jamieson, K. H., & Cappella, J. N. (2009). Echo chamber: Rush Limbaugh and the conservative media establishment. Oxford: Oxford University Press.Google Scholar
  58. 58.
    Conover, M., Ratkiewicz, J., Francisco, M., Gonçalves, B., Flammini, A., & Menczer, F. (2011). Political polarization on twitter. In Proceedings of 5th International AAAI Conference on Weblogs and Social Media (ICWSM).Google Scholar
  59. 59.
    Shalizi, C., & Thomas, A. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods & Research, 40(2), 211–239.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Granovetter, M. (1995). Getting a job: A study of contacts and careers. Chicago: University of Chicago Press.Google Scholar
  61. 61.
    Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The role of social networks in information diffusion. In Proceedings of ACM International World Wide Web Conference (WWW) (pp. 519–528).Google Scholar
  62. 62.
    Brown, J., & Reingen, P. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer Research, 14(3), 350–362.CrossRefGoogle Scholar
  63. 63.
    Friedkin, N. (1980). A test of structural features of granovetter’s strength of weak ties theory. Social Networks, 2(4), 411–422.CrossRefGoogle Scholar
  64. 64.
    Granovetter, M. (1983). The strength of weak ties: A network theory revisited. Sociological Theory, 1(1), 201–233.CrossRefGoogle Scholar
  65. 65.
    Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490.CrossRefGoogle Scholar
  66. 66.
    Lin, N., Ensel, W. M., & Vaughn, J. C. (1981). Social resources and strength of ties: Structural factors in occupational status attainment. American Sociological Review, 46, 393–405.CrossRefGoogle Scholar
  67. 67.
    Nelson, R. E. (1989). The strength of strong ties: Social networks and intergroup conflict in organizations. Academy of Management Journal, 32(2), 377–401.CrossRefGoogle Scholar
  68. 68.
    Onnela, J. -P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences (PNAS), 104(18), 7332–7336.CrossRefADSGoogle Scholar
  69. 69.
    Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In Proceedings of ACM International Conference on Human Factors in Computing Systems (CHI) (pp. 211–220).Google Scholar
  70. 70.
    Wellman, B., & Wortley, S. (1990). Different strokes from different folks: Community ties and social support. American Journal of Sociology, 96(3), 558–588.CrossRefGoogle Scholar
  71. 71.
    Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E., et al. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.CrossRefADSGoogle Scholar
  72. 72.
    Putnam, R. D. (2001). Bowling alone: The collapse and revival of American community. New York: Simon and Schuster.Google Scholar
  73. 73.
    Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 9(10), 178–190.CrossRefGoogle Scholar
  74. 74.
    Huberman, B., Romero, D., & Wu, F. (2009). Social networks that matter: Twitter under the microscope. First Monday, 14(1), 8.Google Scholar
  75. 75.
    Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling users’ activity on Twitter networks: Validation of Dunbar’s number. PLoS One, 6(8), e22656.CrossRefADSGoogle Scholar
  76. 76.
    Wu, F., & Huberman, B. A. (2007). Novelty and collective attention. Proceedings of the National Academy of Sciences (PNAS), 104(45), 17599–17601.CrossRefADSGoogle Scholar
  77. 77.
    Perra, N., Baronchelli, A., Mocanu, D., Gonçalves, B., Pastor-Satorras, R., & Vespignani, A. (2012). Random walks and search in time varying networks. Physical Review Letters, 109, 238701.CrossRefADSGoogle Scholar
  78. 78.
    Shaw, L. B., & Schwartz, I. B. (2010). Enhanced vaccine control of epidemics in adaptive networks. Physical Review E, 81, 046120.CrossRefADSGoogle Scholar
  79. 79.
    Volz, E., & Meyers, L. A. (2009). Epidemic thresholds in dynamic contact networks. Journal of the Royal Society Interface, 6, 233241.CrossRefGoogle Scholar
  80. 80.
    Billingsley, P. (1995). Probability and measure (p. 362). New York: Wiley.Google Scholar
  81. 81.
    Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: reasoning about a highly connected world. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lilian Weng
    • 1
    Email author
  • Filippo Menczer
    • 1
  • Alessandro Flammini
    • 1
  1. 1.Center for Complex Networks and Systems Research, School of Informatics and ComputingIndiana University BloomingtonBloomingtonUSA

Personalised recommendations