Skip to main content

Morphogenesis on the Multicellular Level: Patterns of Mechanical Stresses and Main Modes of Collective Cell Behavior

  • Chapter
  • First Online:
Morphomechanics of Development
  • 609 Accesses

Abstract

Regular patterns of mechanical stresses are perfectly expressed on the macromorphological level in the embryos of all taxonomic groups studied in this respect. Stress patterns are characterized by the topological invariability retained during prolonged time periods and drastically changing in between. After explanting small pieces of embryonic tissues, they are restored within several dozens minutes. Disturbance of stress patterns in developing embryos irreversibly breaks the long-range order of subsequent development. Morphogenetically important stress patterns are established by three geometrically different modes of cell alignment: parallel, perpendicular, and oblique. The first of them creates prolonged files of actively elongated cells. The second is responsible for segregation of an epithelial layer to the domains of columnar and flattened cells. The model of this process, demonstrating its scaling capacities, is described. The third mode which follows the previous one is responsible for making the curvatures. It is associated with formation of “cell fans,” the universal devices for shapes formation due to slow relaxation of the stored elastic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The eccentricity, denoted e or \( \varepsilon \), is a measure of how much any conic section deviates from being circular. For our purposes, it is enough to know that the eccentricity of a circle is zero and the eccentricity of an ellipse which is not a circle is greater than zero but less than 1.

References

  • Aegerter-Wilmsen T, Smith AC, Christen AJ, Aegerter CM, Hafen E, Basler K (2010) Exploring the effects of mechanical feedback on epithelial topology. Development 137:499–506

    Article  CAS  PubMed  Google Scholar 

  • Belintzev BN, Beloussov LV, Zaraiskii AG (1987) Model of pattern formation in epithelial morphogenesis. J Theor Biol 129:369–394

    Article  Google Scholar 

  • Belintzev BN (1988) Physical foundations of biological morphogenesis. Nauka, Moskva (in Russian)

    Google Scholar 

  • Beloussov LV (1988) Contact polarization of Xenopus laevis cells during gastrulation. Ontogenez (Sov J Devel Biol) 19:405–413

    Google Scholar 

  • Beloussov LV (1998) The dynamic architecture of a developing organism. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Beloussov LV (2013) Morphogenesis can be driven by properly parametrised mechanical feedback. Eur Phys J E 36:132–147

    Article  CAS  PubMed  Google Scholar 

  • Beloussov LV, Badenko LA, Katchurin AL, Kurilo LF (1972) Cell movements in morphogenesis of hydroid polyps. J Embr Exp Morphol 27:317–337

    CAS  Google Scholar 

  • Beloussov LV, Bogdanovsky SB (1980) Cellular mechanisms of embryonic regulations in sea urchin embryos. Ontogenez (Sov J Devel Biol) 11:467–475

    Google Scholar 

  • Beloussov LV, Dorfman JG, Cherdantzev VG (1975) Mechanical stresses and morphological patterns in amphibian embryos. J Embr Exp Morphol 34:559–574

    CAS  Google Scholar 

  • Beloussov LV, Grabovsky VI (2005) A common biomechanical model for the formation of stationary cell domains and propagating waves in the developing organisms. Comput Methods Biomech Biomed Eng 8:381–391

    Article  CAS  Google Scholar 

  • Beloussov LV, Labas JA, Kazakova NI, Zaraisky AG (1989) Cytophysiology of growth pulsations in hydroid polyps. J Exp Zool 249:258–270

    Article  Google Scholar 

  • Beloussov LV, Lakirev AV (1988) Self-organization of biological morphogenesis: general approaches and topo-geometrical models. In: Thermodynamics and pattern formation in biology (I. Lamprecht, A.I. Zotineds). Walter de Gruyter, Berlin, pp 321–336

    Google Scholar 

  • Beloussov LV, Lakirev AV, Naumidi II, Novoselov VV (1990) Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopuslaevis embryos. Int J Dev Biol 34:409–419

    CAS  PubMed  Google Scholar 

  • Beloussov LV, Luchinskaia NN (1983) A study of relay cell interactions in the explants of amphibian embryonic tissues. Tsitologia 25:939–944 (in Russian)

    Google Scholar 

  • Beloussov LV, Luchinskaia NN, Ermakov AS, Glagoleva NS (2006) Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Dev Biol 50:113–122

    Article  PubMed  Google Scholar 

  • Beloussov LV, Luchinskaia NN, Stein AA (2000) Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos. Dev Genes Evol 210:92–104

    Article  CAS  PubMed  Google Scholar 

  • Beloussov LV, Saveliev SV, Naumidi II, Novoselov VV (1994) Mechanical stresses in embryonic tissues: patterns, morphogenetic role and involvement in regulatory feedback. Int Rev Cytol 150:1–34

    Article  CAS  PubMed  Google Scholar 

  • Brevier J, Montero D, Svitkina T, Riveline D (2008) The asymmetric self-assembly mechanism of adherent junctions: a cellular push-pull unit. Phys Biol 5(1):016005

    Article  PubMed  Google Scholar 

  • Cherdantzev VG (2003) Morphogenesis and evolution. KMK, Moskva (in Russian)

    Google Scholar 

  • Cherdantzev VG (2006) The dynamic geometry of mass cell movements in animal morphogenesis. Int J Dev Biol 50:169–182

    Article  Google Scholar 

  • Cherdantzeva EM, Cherdantzev VG (2006) Geometry and mechanics of teleost gastrulation and the formation of primary embryonic axes. Int J Dev Biol 50:157–168

    Article  Google Scholar 

  • Chisholm AD, Hardin J (2005) Epidermal morphogenesis. WormBook 1–22

    Google Scholar 

  • Darken RS, Scola AM, Rakeman AS, Das G, Mlodzik M, Wilson PA (2002) The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 21(5):976–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson LA, Marsden M, Keller R, Desimone DW (2006) Integrin alpha5beta1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16(9):833–844

    Article  CAS  PubMed  Google Scholar 

  • Elsdale T (1972) Pattern formation in fibroblast cultures: an inherently precise morphogenetic process. In: Waddington CH (ed) Towards a theoretical biology 4: essays. Edinburgh Univ Press, Edinburgh, pp 95–108

    Google Scholar 

  • Evstifeeva AJ, Kremnyov SV, Beloussov LV (2010) Topological and geometrical changes in Xenopus laevis embryonic epithelia under relaxation of mechanical tensions. Ontogenez (Russ J Dev Biol) 41:190–198

    Google Scholar 

  • Farge E (2003) Mechanical induction of twist in the drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Farhadifar R, Röper J-C, Algouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions and proliferation on epithelial packing. Curr Biol 17:2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Keller R (2002) The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev Biol 247(1):165–181

    Article  CAS  PubMed  Google Scholar 

  • Gurwitsch AG (1914) Der Vererbungsmechanismus der form. Arch Entw-Mech 39:516–577

    Google Scholar 

  • Gustafson T, Wolpert L (1967) Cellular movements and contacts in sea urchin morphogenesis. Biol Rev 42:442–498

    Article  CAS  PubMed  Google Scholar 

  • Hardin JD, Cheng LY (1986) The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 115:490–501

    Article  Google Scholar 

  • Harris AK, Stopak D, Warner P (1984) Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model. J Embryol Exp Morphol 80:1–20

    CAS  PubMed  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrate: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  CAS  PubMed  Google Scholar 

  • Hofmann DK, Gottlieb M (1991) Bud formation in the scyphozoan Cassiopea andromeda: epithelial dynamics and fate map. Hydrobiologia 216(217):53–59

    Article  Google Scholar 

  • Hutson MS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149

    Article  CAS  PubMed  Google Scholar 

  • Isaeva VV, Kasyanov NV, Presnov EV (2012) Topological singularities and symmetry breaking in development. BioSystems 109:280–298

    Article  PubMed  Google Scholar 

  • Johnson MH (1981) Membrane events associated with the generation of a blastocyst. Int Rev Cytol Suppl 12:1–37

    CAS  PubMed  Google Scholar 

  • Kazakova NI, Zierold K, Plickert G, Labas JA, Beloussov LV (1994) X-ray microanalysis of ion contents in vacuoles and cytoplasm of the growing tips of a hydroid polyp as related to osmotic changes and growth pulsations. Tissue Cell 26:687–697

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Tibbetts P (1989) Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev Biol 131(2):539–549

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita N, Iioka H, Miyakoshi A, Ueno N (2003) PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 17(13):1663–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kornikova ES, Korvin-Pavlovskaya EG, Beloussov LV (2009) Relocations of cell convergence sites and formation of pharyngula-like shapes in mechanically relaxed Xenopus embryos. Dev Genes Evol 219:1–10

    Article  PubMed  Google Scholar 

  • Kucera P, Monnet-Tschudi F (1987) Early functional differentiation in the chick embryonic disc: interactions between mechanical activity and extracellular matrix. J Cell Sci Suppl 8:415–432

    Article  CAS  PubMed  Google Scholar 

  • Labas YA, Beloussov LV, Kazakova NI (1992) Kinematics, biological role and cytophysiology of growth pulsations in hydroid polyps. Tsitologia 34:5–23

    Google Scholar 

  • Liem T (2006) Morphodynamik in der Osteopathie. Hippokrates Verlag, Stuttgart

    Google Scholar 

  • Marsden M, DeSimone DW (2003) Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13(14):1182–1191

    Article  CAS  PubMed  Google Scholar 

  • Martin AC, Kashube M, Wieshaus EF (2009) Pulsed contractions of an actomyosin network drive apical constriction. Nature 457:495–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore AR (1941) On the mechanisms of gastrulation in Dendraster excentricus. J Exp Zool 87:101–111

    Article  Google Scholar 

  • Naumidi II, Beloussov LV (1977) Contractility and epithelization of the axial mesoderm in the chick embryo. Ontogenez (Sov J Dev Biol) 8:517–520 (in Russian)

    Google Scholar 

  • Osterfeld M, Du XX, Schüpbach T, Wieschaus E, Shwartsman SY (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24:400–410

    Article  Google Scholar 

  • Otto JJ, Campbell RD (1977) Budding in hydra attenuate: bud stages and fate map. J Exp Zool 200:417–428

    Article  CAS  PubMed  Google Scholar 

  • Peralta XG, Noyama Y, Hutson MS, Montague R, Vernakides S, Kiehart DP, Edwards GS (2007) Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys J 92:2583–2596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petrov KV, Beloussov LV (1984) The kinetics of contact polarization of the cells in the induced tissues of amphibian embryos. Ontogenez (Sov J Dev Biol) 15:643–648

    Google Scholar 

  • Plickert G (1980) Mechanically induced stolon branching in Eirene viridula (Thecata, Campanulinidae). In: Tardent P, Tardent R (eds) Developmental and cellular biology of coelenterates. Elsevier, North Holland, pp 185–193

    Google Scholar 

  • Rauzi M, Lenne P-F (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Top Dev Biol 95:93–121

    Article  PubMed  Google Scholar 

  • Saveliev SV (1988) Experimental studies of mechanical tensions in neuroepithelial brain layers. Ontogenez (Sov J Dev Biol) 19:165–174

    Google Scholar 

  • Saveliev SV, Besova NV (1990) Polarization of neuroepithelial cells after introduction of a portion of the neural tube into the neural cavity in amphibian embryos. Ontogenez (Sov J Dev Biol) 21:298–302

    Google Scholar 

  • Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116(4):901–914

    CAS  PubMed  Google Scholar 

  • Steding G (1967) Ursachen der embryonalen Epithelverdickungen. Acta Anat 68:37–67

    Article  CAS  PubMed  Google Scholar 

  • Sugimura K, Ishihara Shuji (2013) The mechanical anisotropy in a tissue promotes ordering in hexagonal cell packing. Development 140:4091–4101

    Article  CAS  PubMed  Google Scholar 

  • Sumina EL, Sumin DL (2013) Morphogenesis in the aggregates of filamentous Cyanobacteria. Ontogenez (Russ J Dev Biol 44:203–220

    Google Scholar 

  • Tambe DT et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson DA (1942, 2000) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Trinkaus JP (1969) Cells into organs. The forces that shape the embryo. Prentice Hall, New Jersey

    Google Scholar 

  • Troshina TG, Glagoleva NS, Beloussov LV (2011) Statistical study of rapid mechanodependent cell movements in deformed explants in Xenopus laevis embryonic tissues. Ontogenez (Russ J Dev Biol) 42:301–310

    Google Scholar 

  • Vedula RK, Leong BC, Lai TL, Hersen P, Kabla AJ, Lim CT, Ladoux B (2012) Emerging modes of collective cell migration induced by geometrical constraints. PNAS 109:12974–12979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallingford JB, Fraser SE, Harland RM (2002) Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2(6):695–706

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Beloussov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beloussov, L.V. (2015). Morphogenesis on the Multicellular Level: Patterns of Mechanical Stresses and Main Modes of Collective Cell Behavior. In: Morphomechanics of Development. Springer, Cham. https://doi.org/10.1007/978-3-319-13990-6_3

Download citation

Publish with us

Policies and ethics