Skip to main content

From Molecules to Cells: Machines, Symmetries, and Feedbacks

  • Chapter
  • First Online:
Morphomechanics of Development
  • 602 Accesses

Abstract

The first step on the way from chemistry to morphogenesis is the chemo-mechanical transduction that is extensively retarded relaxation of the stored energy onto a small number of selected degrees of freedom. The next level to up is presented by the microtubules and microfilaments-associated supramolecular machines which transform this energy into the dipoles (tensors) of mechanical forces. As a result, the balanced system of tensional and compressive mechanical stresses is created. On the level of isolated supramolecular machines, the processes characterized by the increase of a symmetry order and the drive toward thermodynamical equilibrium are dominated. At the upper structural levels, the role of energy-consuming non-equilibrium structures is increased, producing sub- and super-diffusion movements of the particles and a number of temporal and spatial symmetry breakā€”the dynamic elements of still higher levels events. Among them of the most morphogenetic importance is tensile homeostasis of cell membranes and establishment of the polar cell organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Because of its robustness: Any higher order nodule can be decomposed into third-order ones just by small shifts.

References

  • Aigouy B, Farhadifar R, Staple DB et al (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142(5):773ā€“786

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (2003) Molecular biology of the cell. Garland Publishing Inc, New York

    Google ScholarĀ 

  • Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol Renal Physiol 282:F179ā€“F190

    PubMedĀ  Google ScholarĀ 

  • Balaban NQ et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol 3:466ā€“472

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bastock R, Johnston D (2011) Going with the flow: an elegant model for symmetry breaking. Devel Cell 21:981ā€“982

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bishofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. PNAS 100:9274ā€“9279

    ArticleĀ  Google ScholarĀ 

  • Bluemenfeld LA (1983) Physics of bioenergetic processes. Springer, Berlin

    BookĀ  Google ScholarĀ 

  • Borghi N, Sorokina M, Sherbakova OG, Weis WL, Pruitt DL, Nelson WJ, Dunn AB (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. PNAS 109:12568ā€“12573

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Brevier J, Montero D, Svitkina T, Riveline D (2008) The asymmetric self-assembly mechanism of adherent junctions: a cellular push-pull unit. Phys Biol 5(1):016005

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4:557ā€“561

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • CampĆ s O, Mammoto T, Hasso S, Sperling RA, Oā€™Connell D, Bischof AG, Maas R, Weitz DA, Mahadevan L, Ingber DE (2014) Quantifying cell-generated mechanical forces within living embryonic tissues. Nat Methods 11:183ā€“189

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Carey SP, Charest JM, Reinhart-King CA (2011) Forces during cell adhesion and spreading: implications for cellular homeostasis. Stud Mechanobiol Tissue Eng Biomatter 4:29ā€“69

    ArticleĀ  Google ScholarĀ 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425ā€“1428

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chernavskii DS, Chernavskaia NM (1999) Protein-machine. Biological macromolecular constructions. Moscow University Printing House, Moskva

    Google ScholarĀ 

  • Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Bioch Biophys Acta 1793:911ā€“920

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwarts MA (2013) Fluid shear stress on endothelial cells modulate mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024ā€“1030

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Danilchik MV, Brown EE, Riegert K (2006) Intrinsic chiral properties of the Xenopus egg cortex: an early indication of left-right asymmetry? Development 133:4517ā€“4526

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Del Giudice E et al (2005) Coherent quantum electrodynamics in living matter. Electromagnetic Biol Med 24:199ā€“210

    ArticleĀ  Google ScholarĀ 

  • Del Giudice E, Stefanini P, Tedeschi A, Vitiello G (2011) The interplay of biomolecules and water at the origin of active behavior of living organisms. J Phys Conf Ser 329:012001

    ArticleĀ  Google ScholarĀ 

  • Deng L, Trepat X, Butler JP, Millet E, Morgan KG, Weitz DA, Fredberg JJ (2006) Fast and slow dynamics of the cytoskeleton. Nat Mater 5:636ā€“640

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Diz-MuƱoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23:47ā€“53

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Evstifeeva AJu (2013) Topology and planar polarity of Xenopus embryonic ciliary epithelium. Izvestia Russ Acad Sci Ser Bio 40(6):661ā€“667 (in Russian)

    Google ScholarĀ 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Taback NA, Millet EJ, Fredberg JJ (2003) Time-scale and other invariants of integrative mechanical behavior of the living cell. Phys Rev E 68:041914

    ArticleĀ  Google ScholarĀ 

  • Fakhri N, Wessel AD, Willms C, Pasquali M, Klopfenstein DR, MacKintosh FC, Schmidt CF (2014) High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 344:1031ā€“1034

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci 108:2131ā€“2143

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301ā€“1305

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. PNAS 108:11467ā€“11472

    ArticleĀ  Google ScholarĀ 

  • Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:527ā€“536

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Goehring NW, Grill SW (2013) Cell polarity: mechanochemical patterning. Trends Cell Biol 23:72ā€“80

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Goodwin BC, Trainor LEH (1985) Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J Theor Biol 117:79ā€“106

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263ā€“266

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Gurwitsch AG (1944) A theory of biological field (in Russian). Nauka, Moskva

    Google ScholarĀ 

  • Hochmuth F-M, Shao J-Y, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358ā€“369

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Houk AR, Jilkine A, Mejean CO, Boltyansky R, Dufresne ER, Angenent SB, Altshuler SJ, Wu LF, Weiner OD (2012) Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:175ā€“188

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Howard J (2009) Mechanical signaling in networks of motor and cytoskeletal proteins. Ann Rev Biophys 28:217ā€“234

    ArticleĀ  Google ScholarĀ 

  • Igamberdiev AU (2012) Physics and logic of life. Nova Science Publishers, New York

    Google ScholarĀ 

  • Isaeva VV, Kasyanov NV, Presnov EV (2012) Topological singularities and symmetry breaking in development. BioSystems 109:280ā€“298

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Ishiwata S, Shimamoto Yuta, Suzuki Madoka (2010) Molecular motors as an auto-oscillator. HFSP J 4:100ā€“104

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Klotzsh E, Smith ML, Kubow KE, Muntwyler S, Little WC, Beyeler F, Gourdon D, Nelson BJ, Vogel V (2009) Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. PNAS 106:18267ā€“18272

    ArticleĀ  Google ScholarĀ 

  • Kozlov MM, Mogilner A (2007) Model of polarization and bistability of cell fragments. Biophys J 93:3811ā€“3819

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kruse K, Riveline D (2011) Spontaneous mechanical oscillations: implications for developing organisms. Curr Top Devel Biol 95:67ā€“91

    ArticleĀ  Google ScholarĀ 

  • Ladoux B, Nicolas A (2012) Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys 75:116601 (25 p)

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860ā€“873

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lindemann ChB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123:519ā€“528

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liverpool T (2006) Active gels: where polymer physics meets cytoskeletal dynamics. Phil Trans R Soc A 364:3335ā€“3355

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lo C (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144ā€“152

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Masters TA, Viasnoff V, Gauthier N (2013) Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci USA 110:11875ā€“11880

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Matsuno K (2006) Forming and maintaining a heat engine for quantum biology. BioSystems 85:23ā€“29

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • McClare CWF (1971) Chemical machines, Maxwellā€™s demon and living organisms. J Theor Biol 30:1ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A, Saint-Jean M, Asnacios A (2010) Real-time single cell response to stiffness. PNAS 107:16518ā€“16523

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Munro EM (2006) PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol 18:86ā€“94

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nance J, Zallen JA (2011) Elaborating polarity: PAR proteins and the cytoskelenon. Development 138:799ā€“809

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Odell GM, Oster G, Alberch P, Burnside B (1981) The mechanical basis of morphogenesis. I Epithelial folding and invagination. Dev Biol 85:446ā€“462

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • PlaƧais P-Y, Balland M, Guerin T, Joanny J-F, Martin P (2009) Spontaneous oscillations of a minimal actomyosin system under elastic loading. Phys Rev Lett 103:158102

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Pohl C, Bao Z (2010) Chiral forces organize left-right patterning in C. elegans by uncoupling midline and antero-posterior axis. Dev Cell 19(3):402ā€“412

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Pollack GH (2001) Cells, gels and the engines of life: a new, unifying approach to cell function. Ebner, Seattle

    Google ScholarĀ 

  • Rauzi M, Lenne P-F (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Topics Dev Biol 95:93ā€“121

    ArticleĀ  Google ScholarĀ 

  • Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US, Gao L, Betzig E, Kiehart DP, Goldstein B (2012) Triggering a cell shape change by exploiting pre-existing actomyosin contractions. Science 335(6073):1232ā€“1235

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J: Biophys Lett 89:L52ā€“L54

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, Munro J, Schrƶder E, Zhou J, Brunton VG, Barker N, Clevers H, Sansom OJ, Anderson KI, Weaver VM, Olson MF (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and Ī²-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776ā€“791

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Sardet C, Paix A, Prodon F, Dru P, Chenevert J (2007) From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 236:1716ā€“1731

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schaller V, Weber Chr, Semmrich Chr, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73ā€“77

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shemesh T, Geiger B, Bershadsky AD, Kozlov MM (2005) Focal adhesions as mechansors: a physical mechanism. PNAS 102:12383ā€“12388

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Schroedinger E (1944) What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge

    Google ScholarĀ 

  • Sinha B et al. (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402ā€“413

    Google ScholarĀ 

  • Speder P, Noselli S (2007) Left-right asymmetry: class I myosins show the direction. Curr Opin Cell Biol 19:82ā€“87

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stern CD (1984) A simple model for early morphogenesis. J Theor Biol 107:229ā€“242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435:191ā€“194

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sumida GM, Tomita TM, Shih W, Yamada S (2011) Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. BMC Cell Biol 12:48 (9 p)

    Google ScholarĀ 

  • Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chate H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448ā€“452

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tsikolia N, Schroeder S, Schwartz P, Viebahn C (2012) Paraxial left-sided nodal expression and the start of left-right patterning in the early chick embryo. Differentiation 84:380ā€“391

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447:592ā€“595

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Vandenberg LN, Levine M (2013) A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Dev Biol 379:1ā€“15

    ArticleĀ  CASĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Van der Gucht J, Sykes C (2009) Physical model of cellular symmetry breaking. Cold Spring Harb Perspect Biol 1:a001909

    PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Vogel SK, Pavin N, Maghelli N, Julicher F, Tolic-Nerrelykke IM (2009) Microtubules and motor proteins: mechanically regulated self-organization in vitro. Eur Phys J Spec Topics 178:57ā€“69

    ArticleĀ  Google ScholarĀ 

  • Weiser DC, Row RH, Kimelman D (2007) Rho-regulated Myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development 136:2375ā€“2384

    ArticleĀ  Google ScholarĀ 

  • Wilson PA, Oster G, Keller R (1989) Cell rearrangements and segmentation in Xenopus: direct observations of cultured explants. Development 105:155ā€“166

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wipff P-I, Rifkin DB, Meister J-J, B.Hinz (2007) Myofibroblast contraction activates latent TGF-beta from the extracellular matrix. J Cell Biol 179:1311ā€“1323

    Google ScholarĀ 

  • Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, Labouesse M (2011) Tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471:99ā€“103

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev V. Beloussov .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beloussov, L.V. (2015). From Molecules to Cells: Machines, Symmetries, and Feedbacks. In: Morphomechanics of Development. Springer, Cham. https://doi.org/10.1007/978-3-319-13990-6_2

Download citation

Publish with us

Policies and ethics