Skip to main content

A Robust Learning-Based Detection and Tracking Algorithm

  • Conference paper
Technologies and Applications of Artificial Intelligence (TAAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8916))

  • 1622 Accesses

Abstract

Object tracking in video is a challenging problem in several applications such as video surveillance, video compression, video retrieval, and video editing. Tracking an object in a video is not easy due to loss of information caused by illumination changing in a scene, occlusions with other objects, similar target appearances, and inaccurate tracker responses. In this paper, we present a novel object detection and tracking algorithm via structured output prediction classifier. Given an initial bounding box with its position, we first divide it into sub-blocks with a predefined size. Next, we extract the features from each sub-blocks with Haar-like features method. And then we learn those features with a structured output prediction classifier. We treat the sub-blocks obtained from the initial bounding box as positive samples and then randomly choose negative samples from search windows defined by the specific area around the bounding box. After that, we obtain prediction scores for each sub-blocks both from positive and negative samples. We construct a region-graph with sub-blocks as nodes and classifier’s score as weight to detect the target object in each frame. Our experimental results show that the proposed method outperforms state-of-the-art object tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured Output Tracking with Kernels. In: IEEE International Conference on Computer Vision(ICCV), pp. 263–270. IEEE (2011)

    Google Scholar 

  2. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 1409–1422 (2012)

    Article  Google Scholar 

  3. Avidan, S.: Support Vector Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1064–1072 (2004)

    Article  Google Scholar 

  4. Vijayanarasimhan, S., Grauman, K.: Efficient Region Search for Object Detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1401–1408. IEEE (2011)

    Google Scholar 

  5. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object Localization by Efficient Subwindow Search. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Lehmann, A., Leibe, B., Van Gool, L.: Feature-centric Efficient Subwindow Search. In: International Conference on Computer Vision (ICCV), pp. 940–947. IEEE (2009)

    Google Scholar 

  7. Yeh, T., Lee, J.J., Darrell, T.: Fast Concurrent Object Localization and Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 280–287. IEEE (2009)

    Google Scholar 

  8. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 511–518. IEEE (2001)

    Google Scholar 

  9. Leibe, B., Leonardis, A., Schiele, B.: Combined Object Categorization and Segmentation with an Implicit Shape Model. In: Workshop on Statistical Learning in Computer Vision (ECCV), vol. 2, p. 7 (2004)

    Google Scholar 

  10. Gu, C., Lim, J.J., Arbeláez, P., Malik, J.: Recognition using Regions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1030–1037. IEEE (2009)

    Google Scholar 

  11. Murphy, K., Torralba, A., Eaton, D., Freeman, W.T.: Object detection and localization using local and global features. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 382–400. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Bordes, A., Bottou, L., Gallinari, P., Weston, J.: Solving Multiclass Support Vector Machines with LaRank. In: International Conference on Machine Learning, pp. 89–96. ACM (2007)

    Google Scholar 

  13. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 2–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Machine Learning for Interdependent and Structured Output Spaces. In: International Conference on Machine Learning, pp.104. ACM (2004)

    Google Scholar 

  15. Bordes, A., Usunier, N., Bottou, L.: Sequence labelling sVMs trained in one pass. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 146–161. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Platt, J.: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. MIT Press (1998)

    Google Scholar 

  17. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem. Mathematical Programming 105, 427–449 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kwon, J., Lee, K.: Tracking of a Non-rigid Object Via Patch-Based Dynamic Appearance Modeling and Adaptive Basin Hopping Monte Carlo Sampling. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), pp. 1208–1215. IEEE (2009)

    Google Scholar 

  19. Bashir, F., Porikli, F.: Performance Evaluation of Object Detection and Tracking Systems. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Citeseer (2006)

    Google Scholar 

  20. Wu, Y., Lim, J., Yang, M.: Online Object Tracking: A Benchmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahmah, D.N., Cheng, WH., Chen, YY., Hua, KL. (2014). A Robust Learning-Based Detection and Tracking Algorithm. In: Cheng, SM., Day, MY. (eds) Technologies and Applications of Artificial Intelligence. TAAI 2014. Lecture Notes in Computer Science(), vol 8916. Springer, Cham. https://doi.org/10.1007/978-3-319-13987-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13987-6_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13986-9

  • Online ISBN: 978-3-319-13987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics