Skip to main content

Stochastic Integral and Covariation Representations for Rectangular Lévy Process Ensembles

  • Conference paper

Part of the Progress in Probability book series (PRPR,volume 69)

Abstract

A Bercovici-Pata bijection \(\Lambda _{c}\) from the set of symmetric infinitely divisible distributions to the set of ⊞  c -free infinitely divisible distributions, for certain free convolution ⊞  c is introduced in Benaych-Georges (Random matrices, related convolutions. Probab Theory Relat Fields 144:471–515, 2009. Revised version of F. Benaych-Georges: Random matrices, related convolutions. arXiv, 2005). This bijection is explained in terms of complex rectangular matrix ensembles whose singular distributions are ⊞  c -free infinitely divisible. We investigate the rectangular matrix Lévy processes with jumps of rank one associated to these rectangular matrix ensembles. First as general result, a sample path representation by covariation processes for rectangular matrix Lévy processes of rank one jumps is obtained. Second, rectangular matrix ensembles for ⊞  c -free infinitely divisible distributions are built consisting of matrix stochastic integrals when the corresponding symmetric infinitely divisible distributions under \(\Lambda _{c}\) admit stochastic integral representations. These models are realizations of stochastic integrals of nonrandom functions with respect to rectangular matrix Lévy processes. In particular, any ⊞  c -free selfdecomposable infinitely divisible distribution has a random matrix model of Ornstein-Uhlenbeck type \(\int _{0}^{\infty }e^{-t}\mathrm{d}\Psi (t)\), where \(\left \{\Psi (t): t \geq 0\right \}\) is a rectangular matrix Lévy process.

Keywords

  • Random matrices
  • Rectangular random matrix model
  • Complex matrix semimartingales
  • Complex matrix Lévy processes
  • Lévy measures
  • Ornstein-Uhlenbeck rectangular type processes
  • Infinitely divisible distribution
  • Free infinitely divisible distribution
  • Bercovici-Pata bijection

Mathematics Subject Classification (2000).

  • 46L54
  • 60E07
  • 60H05
  • 15A52
  • 60G51
  • 60G57

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Aoyama, M. Maejima, Some classes of infinitely divisible distributions on \(\mathbb{R}^{d}\) (a survey), unpublished note (2008). Revised version of the Research Report: T. Aoyama, M. Maejima, Some classes of infinitely divisible distributions on \(\mathbb{R}^{d}\) (a survey), The Institute of Statistical Mathematics Cooperate Research Report, Tokyo, vol. 184 (2006), pp. 5–13

    Google Scholar 

  2. T. Aoyama, M. Maejima, Characterizations of subclasses of type G distributions on \(\mathbb{R}^{d}\) by stochastic integral representations. Bermoulli 13(1), 148–160 (2007)

    CrossRef  MathSciNet  Google Scholar 

  3. D. Applebaum, Lévy processes and stochastic integrals in Banach spaces. Probab. Math. Stat. 27, 75–88 (2007)

    MathSciNet  Google Scholar 

  4. O.E. Barndorff-Nielsen, M. Maejima, K. Sato, Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli 12, 1–33 (2006)

    MathSciNet  Google Scholar 

  5. O.E. Barndorff-Nielsen, R. Stelzer, Positive-definite matrix processes of finite variation. Probab. Math. Stat. 27, 3–43 (2007)

    MathSciNet  Google Scholar 

  6. O.E. Barndorff-Nielsen, R. Stelzer, Multivariate supOU processes. Ann. Appl. Probab. 21, 140–182 (2011)

    CrossRef  MathSciNet  Google Scholar 

  7. F. Benaych-Georges, Classical and free infinitely divisible distributions and random matrices. Ann. Probab. 33, 1134–1170 (2005)

    CrossRef  MathSciNet  Google Scholar 

  8. F. Benaych-Georges, Infinitely divisible distributions for rectangular free convolution- classification and matricial interpretation. Probab. Theory Relat. Fields 139, 143–189 (2007)

    CrossRef  MathSciNet  Google Scholar 

  9. F. Benaych-Georges, Random matrices, related convolutions. Probab. Theory Relat. Fields 144, 471–515 (2009). Revised version of F. Benaych-Georges, Random matrices, related convolutions. arXiv (2005)

    Google Scholar 

  10. T. Cabanal-Duvillard, A matrix representation of the Bercovici-Pata bijection. Electron. J. Probab. 10, 632–661 (2005)

    CrossRef  MathSciNet  Google Scholar 

  11. J.A. Domínguez-Molina, V. Pérez-Abreu, A. Rocha-Arteaga, Covariation representations for Hermitian Lévy process ensembles for free infinitely divisible distributions. Electron. Commun. Probab. 18, 1–14 (2013)

    CrossRef  MathSciNet  Google Scholar 

  12. J.A. Domínguez-Molina, A. Rocha-Arteaga, Random matrix models of stochastic integrals type for free infinitely divisible distributions. Periodica Mathematica Hungarica. 64(2), 145–160 (2012)

    CrossRef  MathSciNet  Google Scholar 

  13. F. Hiai, D. Petz, The Semicircle Law, Free Random Variables and Entropy. Mathematics Surveys and Monographs, vol. 77 (American Mathematical Society, Providence, 2000)

    Google Scholar 

  14. Z.J. Jurek, W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables. Z. Wahrscheinlichkeitstheorie. Verw. Geb. 62, 247–262 (1983)

    CrossRef  MathSciNet  Google Scholar 

  15. J.F.C. Kingman, Random walks with spherical symmetry. Acta Math. 109(1), 11–53 (1963)

    CrossRef  MathSciNet  Google Scholar 

  16. V. Pérez-Abreu, N. Sakuma, Free generalized gamma convolutions. Electron. Commun. Probab. 13, 526–539 (2008)

    CrossRef  MathSciNet  Google Scholar 

  17. P. Protter, Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, vol. 21 (Springer, Berlin/New York, 2004)

    Google Scholar 

  18. B.S. Rajput, J. Rosiński, Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989)

    CrossRef  Google Scholar 

  19. A. Rocha-Arteaga, K. Sato, Topics in Infinitely Divisible Distributions and Lévy Processes. Aportaciones Matemáticas, Investigación, vol. 17 (Sociedad Matemática Mexicana, México, 2003)

    Google Scholar 

  20. J. Rosiński, On series representations of infinitely divisible random vectors. Ann. Probab. 18, 405–430 (1990)

    CrossRef  MathSciNet  Google Scholar 

  21. K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  22. K. Sato, Additive processes and stochastic integrals. Ill. J. Math. 50, 825–851 (2006)

    Google Scholar 

  23. K. Sato, M. Yamazato, Stationary processes of Ornstein-Uhlenbeck type, in Probability Theory and Mathematical Statistics, ed. by K. Ito, J.V. Prokhorov. Lecture Notes in Mathematics, vol. 1021 (Spriger, Berlin, 1983), pp. 541–551

    Google Scholar 

  24. K. Urbanik, W.A. Woyczynski, A random integral and Orlicz spaces. Bull. Acad. Polon. Sci. Math. Astro. e Phys. 15, 161–168 (1967)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Rocha-Arteaga .

Editor information

Editors and Affiliations

Appendix

Appendix

We prove Lemma 3.2 of Sect. 3.

Lemma 1

Let u,v be independent random vectors, uniformly distributed on the unit sphere of respectively \(\mathbb{C}^{d}\) , \(\mathbb{C}^{d^{\prime} }.\) Then for any \(A \in \mathbb{M}_{d,d^{\prime}}\),

  1. (a)
    $$\displaystyle{\mathbb{E}_{u,v}\left (\left \langle u,Av\right \rangle \right ) = 0\text{,}}$$
  2. (b)
    $$\displaystyle{\mathbb{E}_{u,v}\left (\mathfrak{R}\left \langle u,Av\right \rangle \right )^{2} = \frac{1} {2dd^{\prime}}\mathrm{tr}\left (AA^{{\ast}}\right ).}$$

Proof

The assertion (a) clearly follows from independence of u and v. Let us prove the assertion (b). By noting that \(\left (vu^{{\ast}}\right )_{ji} = v_{j}\bar{u}_{i}\) we get

$$\displaystyle{\left \langle u,Av\right \rangle =\mathrm{ tr}\left (Avu^{{\ast}}\right ) =\sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }a_{ij}\bar{u}_{i}v_{j},}$$

then

$$\displaystyle{\mathfrak{R}\left \langle u,Av\right \rangle =\sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right ).}$$

If \(a_{ij} = a_{ij1} + ia_{ij2},u_{i} = u_{i1} + iu_{i2},\) \(v_{j} = v_{j1} + iv_{j2}\) then

$$\displaystyle\begin{array}{rcl} \mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )& =& \mathfrak{R}\left [\left (a_{ij1} + ia_{ij2}\right )\left (u_{i1} - iu_{i2}\right )\left (v_{j1} + iv_{j2}\right )\right ] \\ & =& \left (u_{i1}v_{j1} + u_{i2}v_{j2}\right )a_{ij1} + \left (u_{i2}v_{j1} - u_{i1}v_{j2}\right )a_{ij2}.{}\end{array}$$
(1)

Now

$$\displaystyle\begin{array}{rcl} \left (\mathfrak{R}\left \langle u,Av\right \rangle \right )^{2}& =& \left [\sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\right ]\left [\sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\right ] {}\\ & =& \sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\sum _{k=1}^{d}\sum _{ l=1}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\mathfrak{R}\left (a_{kl}\bar{u}_{k}v_{l}\right ) {}\\ & =& \sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\left (\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\right )^{2} +\sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }\sum _{k\neq i}^{d}\sum _{ l\neq j}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\mathfrak{R}\left (a_{kl}\bar{u}_{k}v_{l}\right ). {}\\ \end{array}$$

Expanding \(\left [\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\right ]^{2}\) by using (1) we get

$$\displaystyle\begin{array}{rcl} \left (\mathfrak{R}\left \langle u,Av\right \rangle \right )^{2}& =& \sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }\left [\left (u_{i1}^{2}v_{ j1}^{2} + u_{ i2}^{2}v_{ j2}^{2}\right )a_{ ij1}^{2} + \left (u_{ i2}^{2}v_{ j1}^{2} + u_{ i1}^{2}v_{ j2}^{2}\right )a_{ ij2}^{2}\right ] {}\\ & +& \sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }[\left (2u_{i2}^{2}v_{ j1}v_{j2} - 2u_{i1}u_{i2}v_{j2}^{2} + 2u_{ i1}u_{i2}v_{j1}^{2} - 2u_{ i1}^{2}v_{ j1}v_{j2}\right )a_{ij1}a_{ij2} {}\\ & +& 2u_{i1}u_{i2}v_{j1}v_{j2}\left (a_{ij1}^{2} - a_{ ij2}^{2}\right )] {}\\ & +& \sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\sum _{k\neq i}^{d}\sum _{ l\neq j}^{d^{\prime} }\mathfrak{R}\left (a_{ij}\bar{u}_{i}v_{j}\right )\mathfrak{R}\left (a_{kl}\bar{u}_{k}v_{l}\right ). {}\\ \end{array}$$

Taking expectation of \(\left (\mathfrak{R}\left \langle u,Av\right \rangle \right )^{2}\) we obtain that the expectation of the terms in the second and third summand are zero. Thus, using component-wise the Lemma 2 below,

$$\displaystyle\begin{array}{rcl} \mathbb{E}_{u,v}\left (\mathfrak{R}\left \langle u,Av\right \rangle \right )^{2}& =& \sum _{ i=1}^{d}\sum _{ j=1}^{d^{\prime} }\mathbb{E}\left [\left (u_{i1}^{2}v_{ j1}^{2} + u_{ i2}^{2}v_{ j2}^{2}\right )a_{ ij1}^{2} + \left (u_{ i2}^{2}v_{ j1}^{2} + u_{ i1}^{2}v_{ j2}^{2}\right )a_{ ij2}^{2}\right ] {}\\ & =& \sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\left [\left ( \frac{1} {2d} \frac{1} {2d^{\prime}} + \frac{1} {2d} \frac{1} {2d^{\prime}}\right )a_{ij1}^{2} + \left ( \frac{1} {2d} \frac{1} {2d^{\prime}} + \frac{1} {2d} \frac{1} {2d^{\prime}}\right )a_{ij2}^{2}\right ] {}\\ & =& \frac{1} {2dd^{\prime}}\sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\left (a_{ij1}^{2} + a_{ ij2}^{2}\right ) {}\\ & =& \frac{1} {2dd^{\prime}}\sum _{i=1}^{d}\sum _{ j=1}^{d^{\prime} }\left \vert a_{ij}\right \vert ^{2} {}\\ & =& \frac{1} {2dd^{\prime}}\mathrm{tr}\left (AA^{{\ast}}\right ). {}\\ \end{array}$$

 □ 

The following lemma is well known in the real vector case, see e.g. [15, eq. (2)]. We give a proof for the completeness of the paper.

Lemma 2

Let \(U = \left (U_{1},\ldots,U_{d}\right )^{T}\)  be a random vector uniformly distributed on the unit sphere of \(\mathbb{C}^{d}\) . Then their components U k , k = 1,2,…,d are identically distributed with symmetric density function

$$\displaystyle{ \frac{d - 1} {\pi } \left (1 - x^{2} - y^{2}\right )^{d-2},\quad x^{2} + y^{2} \leq 1. }$$
(2)

The components \(X_{k},Y _{k}\) of \(U_{k} = X_{k} + iY _{k},\) are identically distributed with density

$$\displaystyle{ \frac{1} {\sqrt{\pi }} \frac{\Gamma \left (n\right )} {\Gamma \left (n -\frac{1} {2}\right )}\left (1 - t^{2}\right )^{n-3/2},\ -1 \leq t \leq 1,}$$

and their first two marginal moments are

$$\displaystyle{EX_{k} = EY _{k} = 0}$$

and

$$\displaystyle{EX_{k}^{2} = EY _{ k}^{2} = \frac{1} {2d}.}$$

Proof

Let \(u = \left (u_{1},\ldots,u_{d}\right )\) a random vector choosen uniformly on \(\{u \in \mathbb{C}^{d}: \left \Vert u\right \Vert = 1\},\) observe that \(\left \Vert u\right \Vert ^{2} = uu^{{\ast}} =\sum _{ i=1}^{d}\left \vert u_{i}\right \vert ^{2}.\) By [13, pp 140] the distribution of u k for 1 ≤ k ≤ d is

$$\displaystyle{\frac{d - 1} {\pi } \left (1 - r^{2}\right )^{d-2}r\mathrm{d}r\mathrm{d}\theta \quad (u_{ k} = re^{i\theta },0 \leq r \leq 1,0 \leq \theta \leq 2\pi ).}$$

Using polar coordinates, \(r = \sqrt{x^{2 } + y^{2}}\) and \(\theta =\arctan \left (y/x\right )\) wich implies \(\frac{\partial \left (r,\theta \right )} {\partial \left (x,y\right )} = \frac{1} {\sqrt{x^{2 } +y^{2}}}.\) By the change of variable formula if we denote u k  = x + iy then the distribution of u k is

$$\displaystyle{\frac{d - 1} {\pi } \left (1 - x^{2} - y^{2}\right )^{d-2},}$$

where \(x^{2} + y^{2} \leq 1.\) This proves (2). Hence X k and Y k are identically distributed symmetric distribution around zero and therefore \(EX_{k} = EY _{k} = 0\). Next we compute the marginal density of X k

$$\displaystyle\begin{array}{rcl} f_{X_{k}}\left (x\right )& =& \frac{n - 1} {\pi } \int _{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}} }\left (1 - x^{2} - y^{2}\right )^{n-2}\mathrm{d}y {}\\ & =& \frac{2\left (n - 1\right )} {\pi } \int _{0}^{\sqrt{1-x^{2}} }\left (1 - x^{2} - y^{2}\right )^{n-2}\mathrm{d}y\text{,} {}\\ \end{array}$$

by change of variable \(s = y^{2}/\left (1 - x^{2}\right )\) we get

$$\displaystyle\begin{array}{rcl} f_{X_{k}}\left (x\right )& =& \frac{2\left (n - 1\right )} {\pi } \int _{0}^{\sqrt{1-x^{2}} }\left (1 - x^{2} - y^{2}\right )^{n-2}\mathrm{d}y {}\\ & =& \frac{\left (n - 1\right )\left (1 - x^{2}\right )^{n-3/2}} {\pi } \int _{0}^{1}s^{-\frac{1} {2} }\left (1 - s\right )^{n-2}\mathrm{d}y {}\\ & =& \frac{\left (n - 1\right )\left (1 - x^{2}\right )^{n-3/2}} {\pi } \mathrm{Beta}\left (\frac{1} {2},n - 1\right ) {}\\ & =& \frac{1} {\sqrt{\pi }} \frac{\Gamma \left (n\right )} {\Gamma \left (n -\frac{1} {2}\right )}\left (1 - x^{2}\right )^{n-3/2}. {}\\ \end{array}$$

Now

$$\displaystyle\begin{array}{rcl} \mathrm{E}X_{k}^{2}& =& \int \int _{ D}x^{2}f\left (x,y\right )\mathrm{d}x\mathrm{d}y = \frac{d - 1} {\pi } \int _{-1}^{1}\int _{ -\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}} }x^{2}\left (1 - x^{2} - y^{2}\right )^{d-2}\mathrm{d}x\mathrm{d}y {}\\ & =& \frac{d - 1} {\pi } \int _{0}^{2\pi }\int _{ 0}^{1}r^{2}\cos ^{2}\theta \left (1 - r^{2}\right )^{d-2}r\mathrm{d}r\mathrm{d}\theta {}\\ & =& \frac{d - 1} {\pi } \frac{\pi } {2d\left (d - 1\right )} {}\\ & =& \frac{1} {2d}, {}\\ \end{array}$$

where we have used the identity \(\mathrm{Beta}\left (a,b\right ) =\int _{ 0}^{1}t^{a-1}\left (1 - t\right )^{b-1}\mathrm{d}t = \frac{\Gamma \left (a\right )\Gamma \left (b\right )} {\Gamma \left (a+b\right )}\) to compute \(\int _{0}^{1}r^{3}\left (1 - r^{2}\right )^{d-2}\mathrm{d}r = \frac{1} {2}\int _{0}^{1}s\left (1 - s\right )^{d-2}\mathrm{d}s = \frac{1} {2}\mathrm{Beta}\left (2,d - 1\right ) = \frac{1} {2d\left (d-1\right )},\) the change of variable s = r 2 with \(dr = ds/\left (2\sqrt{s}\right )\) and \(\int _{0}^{2\pi }\cos ^{2}\theta \mathrm{d}\theta =\pi\). □ 

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Domínguez-Molina, J.A., Rocha-Arteaga, A. (2015). Stochastic Integral and Covariation Representations for Rectangular Lévy Process Ensembles. In: Mena, R., Pardo, J., Rivero, V., Uribe Bravo, G. (eds) XI Symposium on Probability and Stochastic Processes. Progress in Probability, vol 69. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13984-5_6

Download citation